Robust Controllability of Boolean Control Networks via Dynamic Programming

This article presents a novel dynamic programming approach to determine the robust controllability of Boolean control networks (BCNs) subject to stochastic disturbances. By applying Bellman's optimality principle, we derive the recurrence relation for computing the optimal time matrix, a crucia...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 36; číslo 9; s. 17448 - 17461
Hlavní autoři: Li, Yakun, Gao, Shuhua, Gao, Yiming, Wu, Jianliang, Feng, Jun-e, Xiang, Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2025
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article presents a novel dynamic programming approach to determine the robust controllability of Boolean control networks (BCNs) subject to stochastic disturbances. By applying Bellman's optimality principle, we derive the recurrence relation for computing the optimal time matrix, a crucial concept characterizing robust reachability between two arbitrary states. We develop a finite-termination dynamic programming algorithm to calculate the optimal time matrix exactly and efficiently, with a rigorously certified iteration count. Sufficient and necessary conditions for robust controllability are then established based on the optimal time matrix. Furthermore, for any pair of reachable states, we construct time-optimal state feedback control laws to steer the system from the initial state to the target state, regardless of disturbances. Finally, extensive numerical experiments with biological networks validate the effectiveness of the proposed approach, showing significant improvements in computational efficiency. Additionally, we introduce a Q -learning-based algorithm and compare its performance, highlighting the advantages of our dynamic programming approach in terms of both efficiency and solution quality.
AbstractList This article presents a novel dynamic programming approach to determine the robust controllability of Boolean control networks (BCNs) subject to stochastic disturbances. By applying Bellman's optimality principle, we derive the recurrence relation for computing the optimal time matrix, a crucial concept characterizing robust reachability between two arbitrary states. We develop a finite-termination dynamic programming algorithm to calculate the optimal time matrix exactly and efficiently, with a rigorously certified iteration count. Sufficient and necessary conditions for robust controllability are then established based on the optimal time matrix. Furthermore, for any pair of reachable states, we construct time-optimal state feedback control laws to steer the system from the initial state to the target state, regardless of disturbances. Finally, extensive numerical experiments with biological networks validate the effectiveness of the proposed approach, showing significant improvements in computational efficiency. Additionally, we introduce a Q -learning-based algorithm and compare its performance, highlighting the advantages of our dynamic programming approach in terms of both efficiency and solution quality.
This article presents a novel dynamic programming approach to determine the robust controllability of Boolean control networks (BCNs) subject to stochastic disturbances. By applying Bellman's optimality principle, we derive the recurrence relation for computing the optimal time matrix, a crucial concept characterizing robust reachability between two arbitrary states. We develop a finite-termination dynamic programming algorithm to calculate the optimal time matrix exactly and efficiently, with a rigorously certified iteration count. Sufficient and necessary conditions for robust controllability are then established based on the optimal time matrix. Furthermore, for any pair of reachable states, we construct time-optimal state feedback control laws to steer the system from the initial state to the target state, regardless of disturbances. Finally, extensive numerical experiments with biological networks validate the effectiveness of the proposed approach, showing significant improvements in computational efficiency. Additionally, we introduce a Q-learning-based algorithm and compare its performance, highlighting the advantages of our dynamic programming approach in terms of both efficiency and solution quality.This article presents a novel dynamic programming approach to determine the robust controllability of Boolean control networks (BCNs) subject to stochastic disturbances. By applying Bellman's optimality principle, we derive the recurrence relation for computing the optimal time matrix, a crucial concept characterizing robust reachability between two arbitrary states. We develop a finite-termination dynamic programming algorithm to calculate the optimal time matrix exactly and efficiently, with a rigorously certified iteration count. Sufficient and necessary conditions for robust controllability are then established based on the optimal time matrix. Furthermore, for any pair of reachable states, we construct time-optimal state feedback control laws to steer the system from the initial state to the target state, regardless of disturbances. Finally, extensive numerical experiments with biological networks validate the effectiveness of the proposed approach, showing significant improvements in computational efficiency. Additionally, we introduce a Q-learning-based algorithm and compare its performance, highlighting the advantages of our dynamic programming approach in terms of both efficiency and solution quality.
Author Wu, Jianliang
Gao, Yiming
Xiang, Cheng
Feng, Jun-e
Li, Yakun
Gao, Shuhua
Author_xml – sequence: 1
  givenname: Yakun
  orcidid: 0000-0001-5635-5554
  surname: Li
  fullname: Li, Yakun
  email: liyakunmath@mail.sdu.edu.cn
  organization: School of Mathematics, Shandong University, Jinan, China
– sequence: 2
  givenname: Shuhua
  orcidid: 0000-0003-3208-9620
  surname: Gao
  fullname: Gao, Shuhua
  email: shuhuagao@sdu.edu.cn
  organization: School of Control Science and Engineering, Shandong University, Jinan, China
– sequence: 3
  givenname: Yiming
  surname: Gao
  fullname: Gao, Yiming
  email: GAOY0053@e.ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Jurong West, Singapore
– sequence: 4
  givenname: Jianliang
  orcidid: 0000-0003-0422-6915
  surname: Wu
  fullname: Wu, Jianliang
  email: jlwu@sdu.edu.cn
  organization: School of Mathematics, Shandong University, Jinan, China
– sequence: 5
  givenname: Jun-e
  orcidid: 0000-0003-3881-3042
  surname: Feng
  fullname: Feng, Jun-e
  email: fengjune@sdu.edu.cn
  organization: School of Mathematics, Shandong University, Jinan, China
– sequence: 6
  givenname: Cheng
  orcidid: 0000-0002-1229-6860
  surname: Xiang
  fullname: Xiang, Cheng
  email: elexc@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Queenstown, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40388283$$D View this record in MEDLINE/PubMed
BookMark eNpFkMtOwzAQRS0EoqX0BxBCWbJJ8SOxnSWUt6qCoEjsLMeZVIEkLnYC6t-T0gfejOU5dzQ-R2i_tjUgdELwiBCcXMym08nriGIaj1gcJxSLPdSnhNOQMin3d3fx3kND7z9wdziOeZQcol6EO4ZK1kePLzZtfROMbd04W5Y6LcqiWQY2D66sLUHX21YwhebHuk8ffBc6uF7WuipM8Ozs3OmqKur5MTrIdelhuKkD9HZ7Mxvfh5Onu4fx5SQ0VIgm5FrmccwFFilAlAtgQmLJMgpplKaCGtCSGp3y7iXPEoYjxhLCjDGQSaYxG6Dz9dyFs18t-EZVhTfQ7V6Dbb1iFMeSCMxph55t0DatIFMLV1TaLdX2_x1A14Bx1nsH-Q4hWK08qz_PauVZbTx3odN1qACA_wDpBAtO2C8ykHlS
CODEN ITNNAL
Cites_doi 10.1007/s11538-017-0306-1
10.1109/LRA.2022.3194326
10.1109/TAC.2018.2880411
10.1109/TNNLS.2024.3380247
10.1371/journal.pone.0046798
10.1016/j.jfranklin.2021.07.010
10.1016/j.automatica.2019.108621
10.1109/TNNLS.2022.3192563
10.1109/TCYB.2020.3003552
10.1109/TAC.2017.2702008
10.1109/TCSII.2023.3309334
10.1016/0022-5193(73)90247-6
10.1109/TCYB.2021.3092374
10.1109/TSMC.2022.3195196
10.1016/S0022-5193(03)00035-3
10.1038/s41467-021-25533-3
10.1109/TCYB.2020.3022430
10.1109/TAC.2018.2830642
10.1016/j.amc.2022.126992
10.1155/2023/6690805
10.1007/s11432-019-9904-6
10.1371/journal.pcbi.1000936
10.1109/LRA.2022.3179420
10.1016/j.automatica.2014.12.018
10.1109/CDC.1992.371340
10.1109/tnnls.2024.3430906
10.1016/j.asoc.2024.111687
10.1371/journal.pcbi.1002267
10.1016/0022-5193(69)90015-0
10.1038/nrg2918
10.1093/bib/bbae286
10.1016/j.automatica.2009.03.006
10.1126/sciadv.abf8124
10.1016/j.ifacol.2022.07.605
10.1016/j.ins.2023.01.017
10.1016/j.jtbi.2006.09.023
10.1109/TAC.2013.2294821
10.1109/TAC.2010.2043294
10.1155/2019/1813594
10.1371/journal.pcbi.1004193
10.1016/j.automatica.2018.06.030
10.1016/j.neunet.2024.106266
10.1109/TNNLS.2022.3164909
10.1016/j.automatica.2017.01.032
10.1016/j.automatica.2017.07.013
10.1038/s41592-019-0690-6
10.1038/s41598-022-20979-x
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2025.3559207
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 17461
ExternalDocumentID 40388283
10_1109_TNNLS_2025_3559207
11006761
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62303277; 11971270; 11631014
  funderid: 10.13039/501100001809
– fundername: Natural Science Fund of Shandong Province
  grantid: 2023HWYQ-003; ZR2023QF048
– fundername: Young Experts of Taishan Scholar Project
  grantid: tsqn202306067
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c277t-6a8f556707bee4f7e378083d2eb4bb72cea82cab6d2efd930433913ccced83a03
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494234100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Nov 01 14:26:55 EDT 2025
Sat Sep 06 11:16:05 EDT 2025
Sat Nov 29 07:34:59 EST 2025
Wed Sep 17 06:32:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-6a8f556707bee4f7e378083d2eb4bb72cea82cab6d2efd930433913ccced83a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3208-9620
0000-0003-0422-6915
0000-0001-5635-5554
0000-0002-1229-6860
0000-0003-3881-3042
PMID 40388283
PQID 3205817062
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TNNLS_2025_3559207
pubmed_primary_40388283
proquest_miscellaneous_3205817062
ieee_primary_11006761
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
Bertsekas (ref29) 2012; 4
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
Sutton (ref31) 2018
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
References_xml – volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref31
– ident: ref42
  doi: 10.1007/s11538-017-0306-1
– ident: ref49
  doi: 10.1109/LRA.2022.3194326
– ident: ref16
  doi: 10.1109/TAC.2018.2880411
– ident: ref17
  doi: 10.1109/TNNLS.2024.3380247
– ident: ref39
  doi: 10.1371/journal.pone.0046798
– ident: ref13
  doi: 10.1016/j.jfranklin.2021.07.010
– ident: ref12
  doi: 10.1016/j.automatica.2019.108621
– ident: ref20
  doi: 10.1109/TNNLS.2022.3192563
– ident: ref36
  doi: 10.1109/TCYB.2020.3003552
– ident: ref10
  doi: 10.1109/TAC.2017.2702008
– ident: ref30
  doi: 10.1109/TCSII.2023.3309334
– ident: ref2
  doi: 10.1016/0022-5193(73)90247-6
– ident: ref24
  doi: 10.1109/TCYB.2021.3092374
– ident: ref22
  doi: 10.1109/TSMC.2022.3195196
– ident: ref18
  doi: 10.1016/S0022-5193(03)00035-3
– ident: ref3
  doi: 10.1038/s41467-021-25533-3
– ident: ref25
  doi: 10.1109/TCYB.2020.3022430
– ident: ref34
  doi: 10.1109/TAC.2018.2830642
– volume: 4
  year: 2012
  ident: ref29
  publication-title: Dynamic Programming and Optimal Control: Volume I
– ident: ref27
  doi: 10.1016/j.amc.2022.126992
– ident: ref6
  doi: 10.1155/2023/6690805
– ident: ref37
  doi: 10.1007/s11432-019-9904-6
– ident: ref41
  doi: 10.1371/journal.pcbi.1000936
– ident: ref46
  doi: 10.1109/LRA.2022.3179420
– ident: ref38
  doi: 10.1016/j.automatica.2014.12.018
– ident: ref32
  doi: 10.1109/CDC.1992.371340
– ident: ref5
  doi: 10.1109/tnnls.2024.3430906
– ident: ref47
  doi: 10.1016/j.asoc.2024.111687
– ident: ref43
  doi: 10.1371/journal.pcbi.1002267
– ident: ref1
  doi: 10.1016/0022-5193(69)90015-0
– ident: ref8
  doi: 10.1038/nrg2918
– ident: ref45
  doi: 10.1093/bib/bbae286
– ident: ref9
  doi: 10.1016/j.automatica.2009.03.006
– ident: ref4
  doi: 10.1126/sciadv.abf8124
– ident: ref48
  doi: 10.1016/j.ifacol.2022.07.605
– ident: ref23
  doi: 10.1016/j.ins.2023.01.017
– ident: ref40
  doi: 10.1016/j.jtbi.2006.09.023
– ident: ref28
  doi: 10.1109/TAC.2013.2294821
– ident: ref11
  doi: 10.1109/TAC.2010.2043294
– ident: ref21
  doi: 10.1155/2019/1813594
– ident: ref19
  doi: 10.1371/journal.pcbi.1004193
– ident: ref35
  doi: 10.1016/j.automatica.2018.06.030
– ident: ref15
  doi: 10.1016/j.neunet.2024.106266
– ident: ref14
  doi: 10.1109/TNNLS.2022.3164909
– ident: ref26
  doi: 10.1016/j.automatica.2017.01.032
– ident: ref33
  doi: 10.1016/j.automatica.2017.07.013
– ident: ref44
  doi: 10.1038/s41592-019-0690-6
– ident: ref7
  doi: 10.1038/s41598-022-20979-x
SSID ssj0000605649
Score 2.4798086
Snippet This article presents a novel dynamic programming approach to determine the robust controllability of Boolean control networks (BCNs) subject to stochastic...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 17448
SubjectTerms Boolean control networks (BCNs)
Computational efficiency
Computational modeling
Controllability
Dynamic programming
Heuristic algorithms
Perturbation methods
robust controllability
State feedback
Sufficient conditions
Time complexity
Vectors
Title Robust Controllability of Boolean Control Networks via Dynamic Programming
URI https://ieeexplore.ieee.org/document/11006761
https://www.ncbi.nlm.nih.gov/pubmed/40388283
https://www.proquest.com/docview/3205817062
Volume 36
WOSCitedRecordID wos001494234100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66ePDi-7E-lgjepNombZMcfSIiRXSFvZU0mcLC2sp2V_Dfm0e74mEP3krbacN8085M5oXQeSRJFEegA8V0GMRMkUAUWgf2jyhDVtBE-2ETLMv4aCRe2mJ1VwsDAC75DC7toYvl61rN7VbZlW1vljLr7Kwyxnyx1mJDJTSGeerMXRKlJCCUjboimVBcDbPs-c24gyS5NBpWkNBO34ttKxTC6R-d5IasLLc3nd552PznirfQRmtg4msvEdtoBaodtNkNb8Dtt7yLnl7rYt7M8K3PVZ_4ft3fuC7xTV1PQFbdJZz5VPEGf40lvvMj7PGLT-z6MKpvD70_3A9vH4N2sEKgCGOzIJW8TJKUGSwA4pIBZdyYYppAERcFIwokJ0oWqTlTakFtkzMRUaUUaE5lSPdRr6orOES4pAJiiBWjUsWGQNrIpDCkwAvFCfTRRcfa_NP3z8id3xGK3GGSW0zyFpM-2rM8_L2zZV8fnXVw5Eb8bUxDVlDPm5ySMLE9BlPSRwcepwV1B-_Rkqceo3X7cp8xdoJ6s-kcTtGa-pqNm-nAyNiID5yM_QA4LMxO
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hilQuLLQ8tqXgSr1VgcR24vgItIjHNkJ0kfYWOfZEWgkSxD4k_n39SEA9cOAWJZnIms_OjD2PD-BHomjCEzSRFiaOuNA0kpUxkfsjqlhULDWBbEIURT6ZyJuuWN3XwiCiTz7DI3fpY_mm1Qt3VHbs2ptlwm12PqSc0ySUa70cqcTWNc-8w0uTjEaUiUlfJhPL43FRjP7aDSFNj6yNlTR2_HvcNUOhOfvPKnmalbc9Tm95zgfvHPMmbHQuJjkJc2ILVrD5BIOevoF0q_kzXN221WI2J2chW_0-dOx-Jm1NTtv2HlXTPyJFSBafkeVUkV-BxJ7chNSuB2v8tuHu_Pf47CLqqBUiTYWYR5nK6zTNhEUDkdcCmcitM2YoVryqBNWocqpVldk7tZHMtTmTCdNao8mZitkOrDZtg3tAaiaRI9eCKc2tgHKxSWlFMa90TnEIP3vVlo-hg0bpdx6xLD0mpcOk7DAZwrbT4eubnfqG8L2Ho7QLwEU1VIPtYlYyGqeuy2BGh7AbcHqR7uH98sZXD-HjxfjPqBxdFtdfYd0NJOSP7cPq_GmB32BNL-fT2dOBn2n_ADFjzq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Controllability+of+Boolean+Control+Networks+via+Dynamic+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Yakun&rft.au=Gao%2C+Shuhua&rft.au=Gao%2C+Yiming&rft.au=Wu%2C+Jianliang&rft.date=2025-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=36&rft.issue=9&rft.spage=17448&rft.epage=17461&rft_id=info:doi/10.1109%2FTNNLS.2025.3559207&rft_id=info%3Apmid%2F40388283&rft.externalDocID=11006761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon