MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection

Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods tend to incorporate additional information such as pseudolabels to improve algorithm performance while overlooking the geometric relationship...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 36; číslo 10; s. 19068 - 19080
Hlavní autoři: Yao, Hongdou, Han, Pengfei, Chen, Jun, Wang, Zheng, Qiu, Yansheng, Wang, Xiao, wang, Yimin, Chai, Xiaoyu, Cao, Chenglong, Jin, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2025
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods tend to incorporate additional information such as pseudolabels to improve algorithm performance while overlooking the geometric relationship between the object's keypoints, resulting in low performance for occluded object detection. To address this issue, we find that introducing the orientation information of objects in the 3-D detection pipeline can help improve the detection performance of occluded objects. An orientation-guided perspective-n-point (PnP) for monocular 3-D object detection method named MonOri is presented in this article, which uses object's orientation to guide keypoints' optimization. Considering the existence of different deformation objects in the scene, we design the feature aggregation detection module (FADM), which consists of the feature focus fusion module (FFFM) and CondConv detection module (CCDM). First, FFFM can highlight signals from irregularly occluded objects, effectively modeling features of elongated and small-sized objects. This module enhances the model's ability to recognize elongated and small-sized objects in complex scenes. Then, the CCDM is designed to improve the network's ability to estimate object keypoints' location regression under occlusion conditions and minimize the network computational overhead. Finally, considering that the unoccluded portions of occluded objects are closely related to the orientation of the objects, an orientation-guided keypoints' selection module (OGKSM) is proposed to enhance the accuracy of objected optimization for keypoint positions and spatial location inference of the object. Experimental results indicate that the MonOri method achieves competitive results; it is also demonstrated that the orientation information is introduced in the PnP algorithm to estimate the object's spatial position that can mitigate the impact of occlusion on object detection, thus improving the recognition rate of occluded objects. Our code is available at https://github.com/DL-YHD/MonOri
AbstractList Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods tend to incorporate additional information such as pseudolabels to improve algorithm performance while overlooking the geometric relationship between the object's keypoints, resulting in low performance for occluded object detection. To address this issue, we find that introducing the orientation information of objects in the 3-D detection pipeline can help improve the detection performance of occluded objects. An orientation-guided perspective-n-point (PnP) for monocular 3-D object detection method named MonOri is presented in this article, which uses object's orientation to guide keypoints' optimization. Considering the existence of different deformation objects in the scene, we design the feature aggregation detection module (FADM), which consists of the feature focus fusion module (FFFM) and CondConv detection module (CCDM). First, FFFM can highlight signals from irregularly occluded objects, effectively modeling features of elongated and small-sized objects. This module enhances the model's ability to recognize elongated and small-sized objects in complex scenes. Then, the CCDM is designed to improve the network's ability to estimate object keypoints' location regression under occlusion conditions and minimize the network computational overhead. Finally, considering that the unoccluded portions of occluded objects are closely related to the orientation of the objects, an orientation-guided keypoints' selection module (OGKSM) is proposed to enhance the accuracy of objected optimization for keypoint positions and spatial location inference of the object. Experimental results indicate that the MonOri method achieves competitive results; it is also demonstrated that the orientation information is introduced in the PnP algorithm to estimate the object's spatial position that can mitigate the impact of occlusion on object detection, thus improving the recognition rate of occluded objects. Our code is available at https://github.com/DL-YHD/MonOri.
Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods tend to incorporate additional information such as pseudolabels to improve algorithm performance while overlooking the geometric relationship between the object's keypoints, resulting in low performance for occluded object detection. To address this issue, we find that introducing the orientation information of objects in the 3-D detection pipeline can help improve the detection performance of occluded objects. An orientation-guided perspective-n-point (PnP) for monocular 3-D object detection method named MonOri is presented in this article, which uses object's orientation to guide keypoints' optimization. Considering the existence of different deformation objects in the scene, we design the feature aggregation detection module (FADM), which consists of the feature focus fusion module (FFFM) and CondConv detection module (CCDM). First, FFFM can highlight signals from irregularly occluded objects, effectively modeling features of elongated and small-sized objects. This module enhances the model's ability to recognize elongated and small-sized objects in complex scenes. Then, the CCDM is designed to improve the network's ability to estimate object keypoints' location regression under occlusion conditions and minimize the network computational overhead. Finally, considering that the unoccluded portions of occluded objects are closely related to the orientation of the objects, an orientation-guided keypoints' selection module (OGKSM) is proposed to enhance the accuracy of objected optimization for keypoint positions and spatial location inference of the object. Experimental results indicate that the MonOri method achieves competitive results; it is also demonstrated that the orientation information is introduced in the PnP algorithm to estimate the object's spatial position that can mitigate the impact of occlusion on object detection, thus improving the recognition rate of occluded objects. Our code is available at https://github.com/DL-YHD/MonOri
Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods tend to incorporate additional information such as pseudolabels to improve algorithm performance while overlooking the geometric relationship between the object's keypoints, resulting in low performance for occluded object detection. To address this issue, we find that introducing the orientation information of objects in the 3-D detection pipeline can help improve the detection performance of occluded objects. An orientation-guided perspective-n-point (PnP) for monocular 3-D object detection method named MonOri is presented in this article, which uses object's orientation to guide keypoints' optimization. Considering the existence of different deformation objects in the scene, we design the feature aggregation detection module (FADM), which consists of the feature focus fusion module (FFFM) and CondConv detection module (CCDM). First, FFFM can highlight signals from irregularly occluded objects, effectively modeling features of elongated and small-sized objects. This module enhances the model's ability to recognize elongated and small-sized objects in complex scenes. Then, the CCDM is designed to improve the network's ability to estimate object keypoints' location regression under occlusion conditions and minimize the network computational overhead. Finally, considering that the unoccluded portions of occluded objects are closely related to the orientation of the objects, an orientation-guided keypoints' selection module (OGKSM) is proposed to enhance the accuracy of objected optimization for keypoint positions and spatial location inference of the object. Experimental results indicate that the MonOri method achieves competitive results; it is also demonstrated that the orientation information is introduced in the PnP algorithm to estimate the object's spatial position that can mitigate the impact of occlusion on object detection, thus improving the recognition rate of occluded objects. Our code is available at https://github.com/DL-YHD/MonOri.Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods tend to incorporate additional information such as pseudolabels to improve algorithm performance while overlooking the geometric relationship between the object's keypoints, resulting in low performance for occluded object detection. To address this issue, we find that introducing the orientation information of objects in the 3-D detection pipeline can help improve the detection performance of occluded objects. An orientation-guided perspective-n-point (PnP) for monocular 3-D object detection method named MonOri is presented in this article, which uses object's orientation to guide keypoints' optimization. Considering the existence of different deformation objects in the scene, we design the feature aggregation detection module (FADM), which consists of the feature focus fusion module (FFFM) and CondConv detection module (CCDM). First, FFFM can highlight signals from irregularly occluded objects, effectively modeling features of elongated and small-sized objects. This module enhances the model's ability to recognize elongated and small-sized objects in complex scenes. Then, the CCDM is designed to improve the network's ability to estimate object keypoints' location regression under occlusion conditions and minimize the network computational overhead. Finally, considering that the unoccluded portions of occluded objects are closely related to the orientation of the objects, an orientation-guided keypoints' selection module (OGKSM) is proposed to enhance the accuracy of objected optimization for keypoint positions and spatial location inference of the object. Experimental results indicate that the MonOri method achieves competitive results; it is also demonstrated that the orientation information is introduced in the PnP algorithm to estimate the object's spatial position that can mitigate the impact of occlusion on object detection, thus improving the recognition rate of occluded objects. Our code is available at https://github.com/DL-YHD/MonOri.
Author Qiu, Yansheng
Cao, Chenglong
wang, Yimin
Wang, Zheng
Chen, Jun
Chai, Xiaoyu
Yao, Hongdou
Han, Pengfei
Wang, Xiao
Jin, Wei
Author_xml – sequence: 1
  givenname: Hongdou
  orcidid: 0000-0002-6297-7138
  surname: Yao
  fullname: Yao, Hongdou
  organization: College of Electronic Engineering, National University of Defense Technology, Hefei, China
– sequence: 2
  givenname: Pengfei
  orcidid: 0000-0003-3724-3551
  surname: Han
  fullname: Han, Pengfei
  organization: School of Cybersecurity and the School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0003-1376-0167
  surname: Chen
  fullname: Chen, Jun
  email: chenj.whu@gmail.com
  organization: National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0003-3846-9157
  surname: Wang
  fullname: Wang, Zheng
  email: wangzwhu@whu.edu.cn
  organization: National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Yansheng
  orcidid: 0000-0002-5619-0902
  surname: Qiu
  fullname: Qiu, Yansheng
  organization: National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 6
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
– sequence: 7
  givenname: Yimin
  surname: wang
  fullname: wang, Yimin
  organization: School of Information Engineering, Zhongnan University of Economics and Law, Wuhan, China
– sequence: 8
  givenname: Xiaoyu
  orcidid: 0000-0003-2278-1955
  surname: Chai
  fullname: Chai, Xiaoyu
  organization: Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, Wuhan, China
– sequence: 9
  givenname: Chenglong
  surname: Cao
  fullname: Cao, Chenglong
  organization: College of Electronic Engineering, National University of Defense Technology, Hefei, China
– sequence: 10
  givenname: Wei
  surname: Jin
  fullname: Jin, Wei
  organization: College of Electronic Engineering, National University of Defense Technology, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40577294$$D View this record in MEDLINE/PubMed
BookMark eNpFkE9PwkAQxTcGI6h8AWNMj16K-6_d1hsBRRMEEjHxttnuTpOS0sXd9uC3dxHEOcybw-9NZt4l6jW2AYRuCB4RgvOH9WIxfx9RTJMRS4RISXaGBpSkNKYsy3qnWXz20dD7DQ6V4iTl-QXqcxwsNOcDNH6zzdJVj1Fo0LSqrWwTz7rKgIlWzSoqrYsCYnVXKxexeBotiw3oNppCGyTQ1-i8VLWH4VGv0Mfz03ryEs-Xs9fJeB5rKkQbJ8oITFJR4BxKAwQUT41WgmuTsdKQNAFOMC1woXFWUl1QlemMCmbycDTH7ArdH_bunP3qwLdyW3kNda0asJ2XjFKec8EoCejdEe2KLRi5c9VWuW_593YA6AHQznrvoDwhBMt9vPI3XrmPVx7jDabbg6kCgH8DwQnHgrAfHDtz6w
CODEN ITNNAL
Cites_doi 10.1109/CVPR52688.2022.00114
10.1007/978-3-030-58592-1_9
10.1109/CVPRW50498.2020.00506
10.1109/CVPR.2018.00255
10.1109/ICCV48922.2021.01489
10.1007/978-3-031-20074-8_41
10.1109/CVPR.2018.00214
10.1109/CVPR52688.2022.00096
10.1109/CVPR46437.2021.00469
10.1109/LRA.2022.3191849
10.1109/TNNLS.2022.3201534
10.1109/ICCV48922.2021.00313
10.1007/978-3-030-58601-0_19
10.1109/CVPR52733.2024.00976
10.1109/ICRA48891.2023.10160483
10.1609/aaai.v36i2.20074
10.1007/978-3-031-20077-9_23
10.1109/CVPR.2012.6248074
10.1109/WACV57701.2024.00737
10.1109/TITS.2025.3525772
10.1109/CVPR42600.2020.01169
10.1109/ICCV.2019.00695
10.1109/CVPR52733.2024.01601
10.1109/CVPR52733.2024.00979
10.1109/ICCV51070.2023.01815
10.1109/CVPR46437.2021.00845
10.1109/TRO.2022.3204509
10.1109/CVPR46437.2021.00330
10.1007/978-3-031-19769-7_8
10.1177/0278364913491297
10.1109/ICCV51070.2023.00592
10.1109/CVPR52688.2022.00281
10.1109/CVPR52688.2022.00398
10.1109/ICCV.2019.00938
10.1109/ICCVW54120.2021.00107
10.1109/LRA.2023.3238137
10.1109/3DV62453.2024.00088
10.1109/CVPR.2019.00864
10.1109/TIP.2025.3544880
10.1109/TNNLS.2023.3339889
10.1109/TNNLS.2022.3171553
10.1007/978-3-030-58580-8_38
10.1109/TITS.2023.3249909
10.1109/CVPR.2018.00249
10.48550/arXiv.1503.02531
10.1145/3442381.3450078
10.1109/ICCVW.2019.00114
10.1007/978-3-031-19769-7_5
10.1109/CVPR52729.2023.01264
10.1007/978-3-030-58542-6_46
10.1109/TIP.2023.3343112
10.1109/ICCV51070.2023.00840
10.1109/ICCV48922.2021.00321
10.1109/CVPR42600.2020.01211
10.1109/TNNLS.2023.3309809
10.1109/CVPR46437.2021.00052
10.1109/TNNLS.2023.3341097
10.1109/CVPR46437.2021.01024
10.1109/CVPR52688.2022.00173
10.1007/s10846-023-02027-6
10.1109/CVPR46437.2021.00886
10.1609/aaai.v37i3.25391
10.1109/CVPR52729.2023.01678
10.1109/TMI.2023.3237183
10.1109/ICCV51070.2023.00558
10.1109/LRA.2025.3544487
10.1109/ICCV48922.2021.00271
10.1109/LRA.2021.3061343
10.1007/978-3-031-73195-2_22
10.1109/ICCV48922.2021.01535
10.1109/CVPR52729.2023.00121
10.1109/ICEICT.2019.8846270
10.48550/ARXIV.1706.03762
10.1109/CVPR42600.2020.00592
10.1109/ICCV51070.2023.00627
10.1007/978-3-031-72761-0_21
10.1109/ICCV.2019.00208
10.1109/TPAMI.2024.3421277
10.3233/FAIA230555
10.1007/978-3-030-58452-8_13
10.1109/TCSVT.2023.3270728
10.1109/ICCV48922.2021.00310
10.1109/CVPR46437.2021.00747
10.1007/978-3-031-20080-9_6
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2025.3577618
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 19080
ExternalDocumentID 40577294
10_1109_TNNLS_2025_3577618
11054071
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Military Equipment Comprehensive Research Project
  grantid: KY24N036; KY24N018
– fundername: National Natural Science Foundation of China; National Nature Science Foundation of China
  grantid: 62071388; 62171325; 62302351
  funderid: 10.13039/501100001809
– fundername: Youth Autonomous Innovation Science Foundation of National University of Defense Technology
  grantid: ZK24-43
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c277t-5ad70167b09efde1ea46dca74cd83fd165e4102b0bc08f2cb2a8c8273d9564403
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001518837800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 22:29:40 EDT 2025
Thu Oct 09 01:30:56 EDT 2025
Sat Nov 29 07:16:33 EST 2025
Wed Oct 15 14:20:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-5ad70167b09efde1ea46dca74cd83fd165e4102b0bc08f2cb2a8c8273d9564403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3846-9157
0000-0002-5619-0902
0000-0003-1376-0167
0000-0003-3724-3551
0000-0003-2278-1955
0000-0002-6297-7138
PMID 40577294
PQID 3224947321
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_40577294
crossref_primary_10_1109_TNNLS_2025_3577618
ieee_primary_11054071
proquest_miscellaneous_3224947321
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
Yang (ref62)
ref52
ref11
ref55
Cao (ref94) 2024
ref10
ref54
ref17
ref16
ref19
ref18
Cao (ref91)
ref93
Lu (ref67) 2023
ref92
ref51
ref50
Wang (ref26)
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref41
ref85
ref44
ref88
ref43
ref87
Zhou (ref39)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref1
ref38
Li (ref86) 2023
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref25
ref20
ref64
Jinrang (ref69); 36
ref63
ref22
ref66
ref21
ref65
Tan (ref2) 2024; 4
ref28
ref27
ref29
ref60
ref61
Chong (ref49) 2022
References_xml – ident: ref23
  doi: 10.1109/CVPR52688.2022.00114
– ident: ref28
  doi: 10.1007/978-3-030-58592-1_9
– ident: ref20
  doi: 10.1109/CVPRW50498.2020.00506
– ident: ref59
  doi: 10.1109/CVPR.2018.00255
– ident: ref76
  doi: 10.1109/ICCV48922.2021.01489
– ident: ref53
  doi: 10.1007/978-3-031-20074-8_41
– ident: ref32
  doi: 10.1109/CVPR.2018.00214
– year: 2024
  ident: ref94
  article-title: Collaborative novel object discovery and box-guided cross-modal alignment for open-vocabulary 3D object detection
  publication-title: arXiv:2406.00830
– ident: ref36
  doi: 10.1109/CVPR52688.2022.00096
– ident: ref21
  doi: 10.1109/CVPR46437.2021.00469
– ident: ref48
  doi: 10.1109/LRA.2022.3191849
– year: 2022
  ident: ref49
  article-title: MonoDistill: Learning spatial features for monocular 3D object detection
  publication-title: arXiv:2201.10830
– ident: ref7
  doi: 10.1109/TNNLS.2022.3201534
– ident: ref33
  doi: 10.1109/ICCV48922.2021.00313
– ident: ref50
  doi: 10.1007/978-3-030-58601-0_19
– ident: ref79
  doi: 10.1109/CVPR52733.2024.00976
– ident: ref71
  doi: 10.1109/ICRA48891.2023.10160483
– ident: ref24
  doi: 10.1609/aaai.v36i2.20074
– ident: ref65
  doi: 10.1007/978-3-031-20077-9_23
– ident: ref63
  doi: 10.1109/CVPR.2012.6248074
– ident: ref51
  doi: 10.1109/WACV57701.2024.00737
– ident: ref81
  doi: 10.1109/TITS.2025.3525772
– ident: ref9
  doi: 10.1109/CVPR42600.2020.01169
– ident: ref18
  doi: 10.1109/ICCV.2019.00695
– start-page: 1475
  volume-title: Proc. Conf. Robot Learn.
  ident: ref26
  article-title: Probabilistic and geometric depth: Detecting objects in perspective
– ident: ref73
  doi: 10.1109/CVPR52733.2024.01601
– ident: ref72
  doi: 10.1109/CVPR52733.2024.00979
– volume: 4
  start-page: 41
  issue: 1
  year: 2024
  ident: ref2
  article-title: Integrating advanced computer vision and AI algorithms for autonomous driving systems
  publication-title: J. Theory Pract. Eng. Sci.
– ident: ref4
  doi: 10.1109/ICCV51070.2023.01815
– ident: ref10
  doi: 10.1109/CVPR46437.2021.00845
– ident: ref11
  doi: 10.1109/TRO.2022.3204509
– ident: ref14
  doi: 10.1109/CVPR46437.2021.00330
– ident: ref58
  doi: 10.1007/978-3-031-19769-7_8
– ident: ref64
  doi: 10.1177/0278364913491297
– ident: ref88
  doi: 10.1109/ICCV51070.2023.00592
– ident: ref66
  doi: 10.1109/CVPR52688.2022.00281
– ident: ref40
  doi: 10.1109/CVPR52688.2022.00398
– ident: ref8
  doi: 10.1109/ICCV.2019.00938
– ident: ref22
  doi: 10.1109/ICCVW54120.2021.00107
– ident: ref70
  doi: 10.1109/LRA.2023.3238137
– ident: ref68
  doi: 10.1109/3DV62453.2024.00088
– ident: ref19
  doi: 10.1109/CVPR.2019.00864
– ident: ref80
  doi: 10.1109/TIP.2025.3544880
– ident: ref5
  doi: 10.1109/TNNLS.2023.3339889
– ident: ref3
  doi: 10.1109/TNNLS.2022.3171553
– ident: ref13
  doi: 10.1007/978-3-030-58580-8_38
– ident: ref89
  doi: 10.1109/TITS.2023.3249909
– ident: ref35
  doi: 10.1109/CVPR.2018.00249
– ident: ref44
  doi: 10.48550/arXiv.1503.02531
– ident: ref60
  doi: 10.1145/3442381.3450078
– ident: ref29
  doi: 10.1109/ICCVW.2019.00114
– volume: 36
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref69
  article-title: Monouni: A unified vehicle and infrastructure-side monocular 3D object detection network with sufficient depth clues
– ident: ref77
  doi: 10.1007/978-3-031-19769-7_5
– ident: ref85
  doi: 10.1109/CVPR52729.2023.01264
– start-page: 2033
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: MoGDE: Boosting mobile monocular 3D object detection with ground depth estimation
– ident: ref74
  doi: 10.1007/978-3-030-58542-6_46
– ident: ref46
  doi: 10.1109/TIP.2023.3343112
– ident: ref41
  doi: 10.1109/ICCV51070.2023.00840
– ident: ref31
  doi: 10.1109/ICCV48922.2021.00321
– ident: ref25
  doi: 10.1109/CVPR42600.2020.01211
– ident: ref1
  doi: 10.1109/TNNLS.2023.3309809
– year: 2023
  ident: ref67
  article-title: GUPNet++: Geometry uncertainty propagation network for monocular 3D object detection
  publication-title: arXiv:2310.15624
– ident: ref34
  doi: 10.1109/CVPR46437.2021.00052
– ident: ref6
  doi: 10.1109/TNNLS.2023.3341097
– ident: ref17
  doi: 10.1109/CVPR46437.2021.01024
– ident: ref54
  doi: 10.1109/CVPR52688.2022.00173
– ident: ref78
  doi: 10.1007/s10846-023-02027-6
– ident: ref75
  doi: 10.1109/CVPR46437.2021.00886
– ident: ref42
  doi: 10.1609/aaai.v37i3.25391
– ident: ref43
  doi: 10.1109/CVPR52729.2023.01678
– ident: ref47
  doi: 10.1109/TMI.2023.3237183
– ident: ref61
  doi: 10.1109/ICCV51070.2023.00558
– ident: ref82
  doi: 10.1109/LRA.2025.3544487
– start-page: 219
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref91
  article-title: CoDA: Collaborative novel box discovery and cross-modal alignment for open-vocabulary 3D object detection
– start-page: 1305
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref62
  article-title: CondConv: Conditionally parameterized convolutions for efficient inference
– ident: ref83
  doi: 10.1109/ICCV48922.2021.00271
– year: 2023
  ident: ref86
  article-title: Augment and criticize: Exploring informative samples for semi-supervised monocular 3D object detection
  publication-title: arXiv:2303.11243
– ident: ref52
  doi: 10.1109/LRA.2021.3061343
– ident: ref93
  doi: 10.1007/978-3-031-73195-2_22
– ident: ref15
  doi: 10.1109/ICCV48922.2021.01535
– ident: ref90
  doi: 10.1109/CVPR52729.2023.00121
– ident: ref56
  doi: 10.1109/ICEICT.2019.8846270
– ident: ref38
  doi: 10.48550/ARXIV.1706.03762
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00592
– ident: ref84
  doi: 10.1109/ICCV51070.2023.00627
– ident: ref92
  doi: 10.1007/978-3-031-72761-0_21
– ident: ref16
  doi: 10.1109/ICCV.2019.00208
– ident: ref45
  doi: 10.1109/TPAMI.2024.3421277
– ident: ref87
  doi: 10.3233/FAIA230555
– ident: ref37
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref57
  doi: 10.1109/TCSVT.2023.3270728
– ident: ref12
  doi: 10.1109/ICCV48922.2021.00310
– ident: ref27
  doi: 10.1109/CVPR46437.2021.00747
– ident: ref55
  doi: 10.1007/978-3-031-20080-9_6
SSID ssj0000605649
Score 2.4819639
Snippet Monocular 3-D object detection is a challenging task in the field of autonomous driving and has made great progress. However, current monocular image methods...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 19068
SubjectTerms 3-D object detection
Accuracy
Computational modeling
Convolution
Data models
Depth measurement
Feature extraction
keypoints’ selection
monocular image
Multimedia communication
Object detection
occlusion object
orientation guided
Prediction algorithms
Three-dimensional displays
Title MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection
URI https://ieeexplore.ieee.org/document/11054071
https://www.ncbi.nlm.nih.gov/pubmed/40577294
https://www.proquest.com/docview/3224947321
Volume 36
WOSCitedRecordID wos001518837800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMbDwLFAelZHYkFvHdmKHDVEeA2orAVK3yK9IXVJUWn4_ZycBMXRgy3B2In_n3HfnOx9C10KWRgJTJdIYRYROE6Iz5ogyqdEiSZzlLjabkKORmk7zSVOsHmthvPcx-cz3w2M8y3dzuwqhsgGYqnhf3CbalDKri7V-AioUiHkW6S5LMkYYl9O2SIbmg7fR6OUV3EGW9nkKg5PQqC-QFSCX4o9Nik1W1vPNaHce9_75xftotyGY-K7WiAO04atDtNc2b8DNXj5Cd7Cbx4vZLR4vZk39UUWeVjPnHZ5UEwxkFoPIPOapYk6GeGxCzAYP_TKmb1Ud9P748Hb_TJp-CsQyKZck1U6GqgNDc186n3gtMme1FNYpXrokS70AvmGosVSVzBqmlVXAbxw4UUJQfoy2qnnlTxFOmJU8zXgpuBOKKk2pLTXLU56XAlDvopt2RYuP-tqMIrobNC8iFEWAomig6KJOWLpfyWbVuuiqRaEArQ9HGbry89VnAb8hkQvJGcic1PD8jG5RPVsz6znaCS-vM_Iu0NZysfKXaNt-LWefix6o1lT1omp9A1J1xi4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqNReoC2vbWkxEjdkcPyInd4Qj4K6ZFdikfYW-RVpL9lq2eX3YzsJqAcO3HKYRNZ848w34xkPwDGXtZGBqWJpjMJciwzrnDqsjDCaZ5mzzKVhE7Is1XRajLtm9dQL471PxWf-ND6ms3w3t6uYKjsLrirdF_cBNgTnlLTtWi8pFRKoeZ4IL81yiimT075NhhRnk7Ic3oeAkIpTJmSI3uOovkhXAr3k_3mlNGblbcaZPM_11jvX_AU2O4qJzlub-AprvvkGW_34BtTt5m04D_t5tJj9RqPFrOtAavCf1cx5h8bNGAU6i4LIPFWqIoYv0cjErA269MtUwNXswMP11eTiBncTFbClUi6x0E7GvgNDCl87n3nNc2e15NYpVrssF54HxmGIsUTV1BqqlVWB4bgQRnFO2C6sN_PG7wPKqJVM5KzmzHFFlCbE1poWghU1D7gP4KTXaPWvvTijSgEHKaoERRWhqDooBrATVfcq2WltAEc9ClWw-3iYoRs_Xz1W4UfECy4ZDTJ7LTwvb_eofn_jq4fw6WZyN6yGt-XfH_A5LqStzzuA9eVi5X_CR_u0nD0ufiUDewYkl8iN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MonOri%3A+Orientation-Guided+PnP+for+Monocular+3-D+Object+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Yao%2C+Hongdou&rft.au=Han%2C+Pengfei&rft.au=Chen%2C+Jun&rft.au=Wang%2C+Zheng&rft.date=2025-10-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2025.3577618&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon