DMAE-EEG: A Pretraining Framework for EEG Spatiotemporal Representation Learning

Electroencephalography (EEG) plays a crucial role in neuroscience research and clinical practice, but it remains limited by nonuniform data, noise, and difficulty in labeling. To address these challenges, we develop a pretraining framework named DMAE-EEG, a denoising masked autoencoder for mining ge...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 36; no. 10; pp. 17664 - 17678
Main Authors: Zhang, Yifan, Yu, Yang, Li, Hao, Wu, Anqi, Chen, Xin, Liu, Jinfang, Zeng, Ling-Li, Hu, Dewen
Format: Journal Article
Language:English
Published: United States IEEE 01.10.2025
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electroencephalography (EEG) plays a crucial role in neuroscience research and clinical practice, but it remains limited by nonuniform data, noise, and difficulty in labeling. To address these challenges, we develop a pretraining framework named DMAE-EEG, a denoising masked autoencoder for mining generalizable spatiotemporal representation from massive unlabeled EEG. First, we propose a novel brain region topological heterogeneity (BRTH) division method to partition the nonuniform data into fixed patches based on neuroscientific priors. Second, we design a denoised pseudo-label generator (DPLG), which utilizes a denoising reconstruction pretext task to enable the learning of generalizable representations from massive unlabeled EEG, suppressing the influence of noise and artifacts. Furthermore, we utilize an asymmetric autoencoder with self-attention as the backbone in the proposed DMAE-EEG, which captures long-range spatiotemporal dependencies and interactions from unlabeled EEG data across 14 public datasets. The proposed DMAE-EEG is validated on both generative (signal quality enhancement) and discriminative tasks (motion intention recognition). In the quality enhancement, DMAE-EEG outperforms existing statistical methods with normalized mean squared error (nMSE) reduction of 27.78%-50.00% under corruption levels of 25%, 50%, and 75%, respectively. In motion intention recognition, DMAE-EEG achieves a relative improvement of 2.71%-6.14% in intrasession classification balanced accuracy across 2-6 class motor execution and imagery tasks, outperforming state-of-the-art methods. Overall, the results suggest that the pretraining framework DMAE-EEG can capture generalizable spatiotemporal representations from massive unlabeled EEG and enhance the knowledge transferability across sessions, subjects, and tasks in various downstream scenarios, advancing EEG-aided diagnosis and brain-computer communication and control, and other clinical practice.
AbstractList Electroencephalography (EEG) plays a crucial role in neuroscience research and clinical practice, but it remains limited by nonuniform data, noise, and difficulty in labeling. To address these challenges, we develop a pretraining framework named DMAE-EEG, a denoising masked autoencoder for mining generalizable spatiotemporal representation from massive unlabeled EEG. First, we propose a novel brain region topological heterogeneity (BRTH) division method to partition the nonuniform data into fixed patches based on neuroscientific priors. Second, we design a denoised pseudo-label generator (DPLG), which utilizes a denoising reconstruction pretext task to enable the learning of generalizable representations from massive unlabeled EEG, suppressing the influence of noise and artifacts. Furthermore, we utilize an asymmetric autoencoder with self-attention as the backbone in the proposed DMAE-EEG, which captures long-range spatiotemporal dependencies and interactions from unlabeled EEG data across 14 public datasets. The proposed DMAE-EEG is validated on both generative (signal quality enhancement) and discriminative tasks (motion intention recognition). In the quality enhancement, DMAE-EEG outperforms existing statistical methods with normalized mean squared error (nMSE) reduction of 27.78%-50.00% under corruption levels of 25%, 50%, and 75%, respectively. In motion intention recognition, DMAE-EEG achieves a relative improvement of 2.71%-6.14% in intrasession classification balanced accuracy across 2-6 class motor execution and imagery tasks, outperforming state-of-the-art methods. Overall, the results suggest that the pretraining framework DMAE-EEG can capture generalizable spatiotemporal representations from massive unlabeled EEG and enhance the knowledge transferability across sessions, subjects, and tasks in various downstream scenarios, advancing EEG-aided diagnosis and brain-computer communication and control, and other clinical practice.
Electroencephalography (EEG) plays a crucial role in neuroscience research and clinical practice, but it remains limited by nonuniform data, noise, and difficulty in labeling. To address these challenges, we develop a pretraining framework named DMAE-EEG, a denoising masked autoencoder for mining generalizable spatiotemporal representation from massive unlabeled EEG. First, we propose a novel brain region topological heterogeneity (BRTH) division method to partition the nonuniform data into fixed patches based on neuroscientific priors. Second, we design a denoised pseudo-label generator (DPLG), which utilizes a denoising reconstruction pretext task to enable the learning of generalizable representations from massive unlabeled EEG, suppressing the influence of noise and artifacts. Furthermore, we utilize an asymmetric autoencoder with self-attention as the backbone in the proposed DMAE-EEG, which captures long-range spatiotemporal dependencies and interactions from unlabeled EEG data across 14 public datasets. The proposed DMAE-EEG is validated on both generative (signal quality enhancement) and discriminative tasks (motion intention recognition). In the quality enhancement, DMAE-EEG outperforms existing statistical methods with normalized mean squared error (nMSE) reduction of 27.78%-50.00% under corruption levels of 25%, 50%, and 75%, respectively. In motion intention recognition, DMAE-EEG achieves a relative improvement of 2.71%-6.14% in intrasession classification balanced accuracy across 2-6 class motor execution and imagery tasks, outperforming state-of-the-art methods. Overall, the results suggest that the pretraining framework DMAE-EEG can capture generalizable spatiotemporal representations from massive unlabeled EEG and enhance the knowledge transferability across sessions, subjects, and tasks in various downstream scenarios, advancing EEG-aided diagnosis and brain-computer communication and control, and other clinical practice.Electroencephalography (EEG) plays a crucial role in neuroscience research and clinical practice, but it remains limited by nonuniform data, noise, and difficulty in labeling. To address these challenges, we develop a pretraining framework named DMAE-EEG, a denoising masked autoencoder for mining generalizable spatiotemporal representation from massive unlabeled EEG. First, we propose a novel brain region topological heterogeneity (BRTH) division method to partition the nonuniform data into fixed patches based on neuroscientific priors. Second, we design a denoised pseudo-label generator (DPLG), which utilizes a denoising reconstruction pretext task to enable the learning of generalizable representations from massive unlabeled EEG, suppressing the influence of noise and artifacts. Furthermore, we utilize an asymmetric autoencoder with self-attention as the backbone in the proposed DMAE-EEG, which captures long-range spatiotemporal dependencies and interactions from unlabeled EEG data across 14 public datasets. The proposed DMAE-EEG is validated on both generative (signal quality enhancement) and discriminative tasks (motion intention recognition). In the quality enhancement, DMAE-EEG outperforms existing statistical methods with normalized mean squared error (nMSE) reduction of 27.78%-50.00% under corruption levels of 25%, 50%, and 75%, respectively. In motion intention recognition, DMAE-EEG achieves a relative improvement of 2.71%-6.14% in intrasession classification balanced accuracy across 2-6 class motor execution and imagery tasks, outperforming state-of-the-art methods. Overall, the results suggest that the pretraining framework DMAE-EEG can capture generalizable spatiotemporal representations from massive unlabeled EEG and enhance the knowledge transferability across sessions, subjects, and tasks in various downstream scenarios, advancing EEG-aided diagnosis and brain-computer communication and control, and other clinical practice.
Author Wu, Anqi
Yu, Yang
Chen, Xin
Zhang, Yifan
Li, Hao
Zeng, Ling-Li
Liu, Jinfang
Hu, Dewen
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0002-4671-723X
  surname: Zhang
  fullname: Zhang, Yifan
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0002-8967-0427
  surname: Yu
  fullname: Yu, Yang
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Hao
  orcidid: 0000-0002-9542-787X
  surname: Li
  fullname: Li, Hao
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Anqi
  surname: Wu
  fullname: Wu, Anqi
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-0672-0207
  surname: Chen
  fullname: Chen, Xin
  organization: Department of Neurosurgery, Xiangya Hospital, National Clinical Medical Research Center for Geriatric Diseases, Central South University, Changsha, China
– sequence: 6
  givenname: Jinfang
  orcidid: 0000-0001-6986-1173
  surname: Liu
  fullname: Liu, Jinfang
  organization: Department of Neurosurgery, Xiangya Hospital, National Clinical Medical Research Center for Geriatric Diseases, Central South University, Changsha, China
– sequence: 7
  givenname: Ling-Li
  orcidid: 0000-0002-0515-256X
  surname: Zeng
  fullname: Zeng, Ling-Li
  email: zengphd@nudt.edu.cn
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 8
  givenname: Dewen
  orcidid: 0000-0001-7357-0053
  surname: Hu
  fullname: Hu, Dewen
  email: dwhu@nudt.edu.cn
  organization: College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40601454$$D View this record in MEDLINE/PubMed
BookMark eNpFkE1PwkAQhjcGI4j8AWNMj16K-71dbwQLmiASwcRbs7Szpko_3C0x_nuLoM5l3kyedw7PKeqUVQkInRM8JATr69V8PlsOKaZiyEREtCZHqEeJpCFlUdT5y-qliwbev-F2JBaS6xPU5W0kXPAeWtw-jOIwjqc3wShYOGicycu8fA0mzhTwWbn3wFYuaIFgWZsmrxoo6sqZTfAEtQMPZbO7lsEMjNsVz9CxNRsPg8Puo-dJvBrfhbPH6f14NAtTqlQTMgMpaGZJZFOiuFbCCLBWRVryVJOMg-KZ4oSnlnGss8hKkKnBAmewXgvN-uhq_7d21ccWfJMUuU9hszElVFufMEqlIkwI3qKXB3S7LiBLapcXxn0lvxZagO6B1FXeO7B_CMHJznbyYzvZ2U4OttvSxb6UA8B_gWBJtZLsGzi1ebY
CODEN ITNNAL
Cites_doi 10.3390/app11041380
10.1007/s11023-020-09548-1
10.1145/3577925
10.1109/CVPR46437.2021.01212
10.1109/TPAMI.2014.2330598
10.1007/s11571-020-09634-1
10.1016/j.jneumeth.2020.108833
10.1109/EMBC44109.2020.9175874
10.1038/nrneurol.2016.113
10.1097/00004691-198804000-00005
10.1088/1741-2552/ac23e2
10.1007/978-3-658-40442-0_9
10.1016/s1388-2457(00)00527-7
10.1161/01.CTR.101.23.e215
10.1038/nrneurol.2012.150
10.1016/S0167-8760(00)00075-1
10.1016/j.neunet.2020.05.032
10.48550/ARXIV.1706.03762
10.1088/1741-2552/aace8c
10.1109/CVPR52688.2022.01553
10.1016/j.inffus.2023.03.022
10.1016/j.patcog.2022.108757
10.1093/gigascience/giaa098
10.1109/TNNLS.2020.3015505
10.1109/TBME.2004.827072
10.3389/fnins.2012.00039
10.1109/TNSRE.2022.3230250
10.1016/0013-4694(91)90202-F
10.1038/s42256-019-0091-7
10.1038/s41551-022-00914-1
10.1162/089976602317318938
10.1007/s11042-015-2717-z
10.1109/TAFFC.2022.3164516
10.1126/science.1127647
10.3389/fneur.2019.00325
10.1109/TPAMI.2022.3152247
10.1038/s42256-023-00714-5
10.1590/1980-57642016dn11-010002
10.1016/j.neuroimage.2021.118721
10.24003/emitter.v5i1.165
10.1109/JBHI.2023.3335854
10.1109/CCMB.2013.6609178
10.1111/j.1528-1167.2006.00655.x
10.1038/s41467-024-45922-8
10.1109/EMBC46164.2021.9629837
10.1109/CVPR42600.2020.00674
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2025.3581991
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 17678
ExternalDocumentID 40601454
10_1109_TNNLS_2025_3581991
11062976
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Science and Technology Innovation Program of Hunan Province
  grantid: 2023RC1004; 2024QK2006
  funderid: 10.13039/501100019081
– fundername: STI 2030—Major Projects
  grantid: 2022ZD0208903
– fundername: National Natural Science Foundation of China
  grantid: U24A20339; 62036013
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c277t-3aece93f18fc174975a5eff78964c91d4e74d7414cf3409d8f6e6ca050debb593
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522955400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 22:28:33 EDT 2025
Thu Oct 09 01:30:56 EDT 2025
Sat Nov 29 07:11:57 EST 2025
Wed Oct 15 14:20:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-3aece93f18fc174975a5eff78964c91d4e74d7414cf3409d8f6e6ca050debb593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8967-0427
0000-0002-9542-787X
0000-0002-4671-723X
0000-0001-7357-0053
0000-0002-0515-256X
0000-0002-0672-0207
0000-0001-6986-1173
PMID 40601454
PQID 3226713554
PQPubID 23479
PageCount 15
ParticipantIDs ieee_primary_11062976
proquest_miscellaneous_3226713554
crossref_primary_10_1109_TNNLS_2025_3581991
pubmed_primary_40601454
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Teplan (ref1) 2002; 2
ref15
Jasper (ref22) 1958; 10
ref14
Alsentzer (ref26)
ref11
ref10
ref54
ref17
ref19
ref18
Jiang (ref53)
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
Yang (ref51); 36
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
Dosovitskiy (ref42)
ref24
ref23
ref25
ref20
Devlin (ref16) 2018; 1
ref21
Wang (ref52)
ref28
ref27
ref29
References_xml – ident: ref30
  doi: 10.3390/app11041380
– ident: ref17
  doi: 10.1007/s11023-020-09548-1
– ident: ref18
  doi: 10.1145/3577925
– ident: ref40
  doi: 10.1109/CVPR46437.2021.01212
– ident: ref47
  doi: 10.1109/TPAMI.2014.2330598
– start-page: 238
  volume-title: Proc. Mach. Learn. Health Workshop (ML4H)
  ident: ref26
  article-title: Contrastive representation learning for electroencephalogram classification
– ident: ref8
  doi: 10.1007/s11571-020-09634-1
– ident: ref48
  doi: 10.1016/j.jneumeth.2020.108833
– volume: 36
  start-page: 32039
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref51
  article-title: BIOT: Biosignal transformer for cross-data learning in the wild
– ident: ref49
  doi: 10.1109/EMBC44109.2020.9175874
– ident: ref2
  doi: 10.1038/nrneurol.2016.113
– ident: ref23
  doi: 10.1097/00004691-198804000-00005
– volume: 10
  start-page: 371
  year: 1958
  ident: ref22
  article-title: Ten-twenty electrode system of the international federation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– ident: ref54
  doi: 10.1088/1741-2552/ac23e2
– ident: ref29
  doi: 10.1007/978-3-658-40442-0_9
– ident: ref24
  doi: 10.1016/s1388-2457(00)00527-7
– ident: ref45
  doi: 10.1161/01.CTR.101.23.e215
– ident: ref4
  doi: 10.1038/nrneurol.2012.150
– ident: ref34
  doi: 10.1016/S0167-8760(00)00075-1
– ident: ref39
  doi: 10.1016/j.neunet.2020.05.032
– ident: ref44
  doi: 10.48550/ARXIV.1706.03762
– ident: ref7
  doi: 10.1088/1741-2552/aace8c
– ident: ref43
  doi: 10.1109/CVPR52688.2022.01553
– volume: 2
  start-page: 1
  issue: 2
  year: 2002
  ident: ref1
  article-title: Fundamentals of EEG measurement
  publication-title: Meas. Sci. Technol.
– ident: ref3
  doi: 10.1016/j.inffus.2023.03.022
– ident: ref12
  doi: 10.1016/j.patcog.2022.108757
– ident: ref46
  doi: 10.1093/gigascience/giaa098
– ident: ref38
  doi: 10.1109/TNNLS.2020.3015505
– ident: ref31
  doi: 10.1109/TBME.2004.827072
– ident: ref37
  doi: 10.3389/fnins.2012.00039
– start-page: 1
  volume-title: Proc. 12th Int. Conf. Learn. Represent.
  ident: ref53
  article-title: Large brain model for learning generic representations with tremendous EEG data in BCI
– ident: ref11
  doi: 10.1109/TNSRE.2022.3230250
– ident: ref13
  doi: 10.1016/0013-4694(91)90202-F
– ident: ref6
  doi: 10.1038/s42256-019-0091-7
– start-page: 39249
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref52
  article-title: EEGPT: Pretrained transformer for universal and reliable representation of EEG signals
– ident: ref19
  doi: 10.1038/s41551-022-00914-1
– ident: ref27
  doi: 10.1162/089976602317318938
– ident: ref32
  doi: 10.1007/s11042-015-2717-z
– ident: ref21
  doi: 10.1109/TAFFC.2022.3164516
– ident: ref28
  doi: 10.1126/science.1127647
– ident: ref25
  doi: 10.3389/fneur.2019.00325
– ident: ref41
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref10
  doi: 10.1038/s42256-023-00714-5
– volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref42
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
– ident: ref35
  doi: 10.1590/1980-57642016dn11-010002
– ident: ref15
  doi: 10.1016/j.neuroimage.2021.118721
– volume: 1
  start-page: 4171
  year: 2018
  ident: ref16
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: North Amer. Chapter Assoc. Comput. Linguistics
– ident: ref33
  doi: 10.24003/emitter.v5i1.165
– ident: ref9
  doi: 10.1109/JBHI.2023.3335854
– ident: ref36
  doi: 10.1109/CCMB.2013.6609178
– ident: ref5
  doi: 10.1111/j.1528-1167.2006.00655.x
– ident: ref14
  doi: 10.1038/s41467-024-45922-8
– ident: ref50
  doi: 10.1109/EMBC46164.2021.9629837
– ident: ref20
  doi: 10.1109/CVPR42600.2020.00674
SSID ssj0000605649
Score 2.4929416
Snippet Electroencephalography (EEG) plays a crucial role in neuroscience research and clinical practice, but it remains limited by nonuniform data, noise, and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 17664
SubjectTerms Algorithms
Autoencoders
Brain - physiology
Brain modeling
Databases, Factual
Decoding
Electrodes
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - methods
Feature extraction
Humans
Machine Learning
masked autoencoder
motion intention recognition
Motors
Neural Networks, Computer
Noise
Representation learning
Signal Processing, Computer-Assisted
signal quality enhancement
Signal-To-Noise Ratio
Spatio-Temporal Analysis
Spatiotemporal phenomena
Title DMAE-EEG: A Pretraining Framework for EEG Spatiotemporal Representation Learning
URI https://ieeexplore.ieee.org/document/11062976
https://www.ncbi.nlm.nih.gov/pubmed/40601454
https://www.proquest.com/docview/3226713554
Volume 36
WOSCitedRecordID wos001522955400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RCqFeWh4FlkdlJG7IbdaxY5vbCnbhAKsVLdLeIsceIySURdvd_n7GjlPEoQduiWQ70Xy25xt7HgBvQyc6FyrDo_OKE_933NngOAoRiCAbQrrLxSb0cmnWa7sqweo5FgYRs_MZnqfHfJcfNn6fjsouSFU1gvTnARxorYdgrdsDlYqIeZPprpg2gotar8cgmcpeXC2XXy7JHBTqPGX8IlZ0BA9kSkYilfxHJ-UiK3fzzax3Fif_-ccP4bgQTDYbZsQjuIf9YzgZizewspafwOrj19mcz-ef3rMZW21xrBXBFqO7FiM-y6gBu8xe1yWJ1S_2LTvPlpilnpUMrT9O4ftifvXhMy_lFbgXWu947dCjrePURE92idXKKYxRG9tIb6dBopaBCIf0sSYrMJjYYONdpaqAXads_RQO-02Pz4GZTvigamkUWmli1TWmoveO-tMOEsUE3o0Cbn8PWTTabH1Uts3ItAmZtiAzgdMkyb8tixAn8GYEpaVFkG42XI-b_XVLu1KTag0qOYFnA1q3vUeQX9wx6ks4Sh8fHPReweFuu8fXcN_f7H5eb89opq3NWZ5pfwCTtsyu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VFkEvLY8C6QOMxA253XjtXbu3qE1aRLqKaJByW3n9QEhog9KE38_Y6y3qoQduu5JtWfPZnm_seQB8sg1rtM0k9doIivxfU62spo4xiwRZItJNLDZRVpVcLNQsBavHWBjnXHQ-c6fhM77l26XZhKuyM1RVBUP9-QR2BOds2IVr3V-pZEjNi0h42bBglOXlog-TydTZvKqmt2gQMnEacn4hL9qFZzykI-GCP9BKsczK44wzap7J_n_O-QXsJYpJRt2aeAlbrn0F-335BpJ282uYXd6MxnQ8vjonIzJbub5aBJn0DlsEGS3BBuQ2-l2nNFa_yLfoPpuillqScrT-OIDvk_H84pqmAgvUsLJc01w741Tuh9IbtExUKbRw3pdSFdyooeWu5BYpBzc-RzvQSl-4wuhMZNY1jVD5G9hul617B0Q2zFiRcymc4tJnTSEz_G-wP54hng3gcy_g-neXR6OO9kem6ohMHZCpEzIDOAiS_NcyCXEAH3tQatwG4W1Dt265uavxXCpCtUHBB_C2Q-u-dw_y4SOjfoDn1_ObaT39Un09gt0wkc5d7xi216uNO4Gn5s_6593qfVxvfwGTac8N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMAE-EEG%3A+A+Pretraining+Framework+for+EEG+Spatiotemporal+Representation+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Yifan&rft.au=Yu%2C+Yang&rft.au=Li%2C+Hao&rft.au=Wu%2C+Anqi&rft.date=2025-10-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=36&rft.issue=10&rft.spage=17664&rft.epage=17678&rft_id=info:doi/10.1109%2FTNNLS.2025.3581991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2025_3581991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon