Another characterization of convexity for set-valued maps
We give a new necessary and sufficient condition for convexity of a set-valued map F between Banach spaces. It is established for a closed map F having nonconvex values. The main tool in this paper is the coderivative of F which is constructed with the help of an abstract subdifferential notion of P...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 20; číslo 3-4; s. 341 - 351 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Marcel Dekker, Inc
01.01.1999
Taylor & Francis |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give a new necessary and sufficient condition for convexity of a set-valued map F between Banach spaces. It is established for a closed map F having nonconvex values. The main tool in this paper is the coderivative of F which is constructed with the help of an abstract subdifferential notion of Penot . A detailed discussion is devoted to special cases when the contingent, the Fréchet and the Clarke-Rockafellar subdifFerentials Sixe used as this abstract subdifferential. |
|---|---|
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630569908816896 |