Performance Evaluation of Hybrid Cloud-Fog Computing Architectures in Smart Home IoT Environments: A Comparative Simulation Study Across Multiple Tools
This study evaluates a hybrid cloud-fog computing architecture within a smart home environment consisting of 50 IoT devices. The performance is assessed using seven simulation tools: MATLAB, iFogSim, EdgeCloudSim, YAFS, FogNetSim++, PureEdgeSim, and LEAF. Simulation results demonstrate that distribu...
Gespeichert in:
| Veröffentlicht in: | Journal of grid computing Jg. 23; H. 2; S. 14 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Nature B.V
01.06.2025
|
| Schlagworte: | |
| ISSN: | 1570-7873, 1572-9184 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study evaluates a hybrid cloud-fog computing architecture within a smart home environment consisting of 50 IoT devices. The performance is assessed using seven simulation tools: MATLAB, iFogSim, EdgeCloudSim, YAFS, FogNetSim++, PureEdgeSim, and LEAF. Simulation results demonstrate that distributing tasks between two fog nodes significantly reduces the execution time of high-priority tasks to approximately 0.0009 s. In contrast, MATLAB’s single-node approach achieves an execution time of 0.001 s but results in excessive CPU utilization, with Fog Node 1 reaching 90% usage and consuming up to 25,935 kWh. Task distribution between Fog Node 1 and Fog Node 2 achieves a more balanced load, with CPU utilization reduced to approximately 70% on one node and 20% on the other. This balanced allocation leads to a per-node energy reduction of around 20%. Cloud usage remains steady at 15% CPU utilization, indicating that offloading lower-priority tasks to the cloud has minimal impact on overall energy consumption. The redistribution of tasks also reduces memory usage, as the utilization of Fog Node 2 drops to approximately 10% when workloads are distributed. Findings highlight that achieving balanced resource allocation is critical for reducing latency, improving energy efficiency, and maintaining steady throughput across simulation tools. Comparative results indicate that iFogSim, EdgeCloudSim, YAFS, FogNetSim++, PureEdgeSim, and LEAF offer greater scalability and energy efficiency than MATLAB, particularly for large-scale deployments. The insights from this study can be extended to other IoT domains, such as healthcare and industrial automation, where latency optimization and resource efficiency remain paramount. |
|---|---|
| AbstractList | This study evaluates a hybrid cloud-fog computing architecture within a smart home environment consisting of 50 IoT devices. The performance is assessed using seven simulation tools: MATLAB, iFogSim, EdgeCloudSim, YAFS, FogNetSim++, PureEdgeSim, and LEAF. Simulation results demonstrate that distributing tasks between two fog nodes significantly reduces the execution time of high-priority tasks to approximately 0.0009 s. In contrast, MATLAB’s single-node approach achieves an execution time of 0.001 s but results in excessive CPU utilization, with Fog Node 1 reaching 90% usage and consuming up to 25,935 kWh. Task distribution between Fog Node 1 and Fog Node 2 achieves a more balanced load, with CPU utilization reduced to approximately 70% on one node and 20% on the other. This balanced allocation leads to a per-node energy reduction of around 20%. Cloud usage remains steady at 15% CPU utilization, indicating that offloading lower-priority tasks to the cloud has minimal impact on overall energy consumption. The redistribution of tasks also reduces memory usage, as the utilization of Fog Node 2 drops to approximately 10% when workloads are distributed. Findings highlight that achieving balanced resource allocation is critical for reducing latency, improving energy efficiency, and maintaining steady throughput across simulation tools. Comparative results indicate that iFogSim, EdgeCloudSim, YAFS, FogNetSim++, PureEdgeSim, and LEAF offer greater scalability and energy efficiency than MATLAB, particularly for large-scale deployments. The insights from this study can be extended to other IoT domains, such as healthcare and industrial automation, where latency optimization and resource efficiency remain paramount. |
| ArticleNumber | 14 |
| Author | Ruchika Chhillar, Rajender Singh |
| Author_xml | – sequence: 1 surname: Ruchika fullname: Ruchika – sequence: 2 givenname: Rajender Singh surname: Chhillar fullname: Chhillar, Rajender Singh |
| BookMark | eNp9UctKAzEUDVLBWv0BVwHXo0kmY2bcldJaQVFoXYc0yWjKTFLzKPRL_F3j1JULV_fAPec-zjkHI-usBuAKoxuMELsNGDFSFohUBWpqRIrmBIxxxTLANR0NGBWsZuUZOA9hizIz08bg61X71vleWKnhfC-6JKJxFroWLg8bbxScdS6pYuHe4cz1uxSNfYdTLz9M1DImrwM0Fq564SNcul7DR7eGc7s33tle2xju4XRQCp8n7zVcmT51xyWrmNQBTqV3IcDn1EWz6zRcO9eFC3Daii7oy986AW-L-Xq2LJ5eHh5n06dCEsZiQegd2rRSqJqqUgslNKaoupNKM1ZSmVsbSZWUdVs1ihFNakqbFje4lKSSG1xOwPVx7s67z6RD5FuXvM0reYnrbBJpSppZ9ZE1nOp1y6WJww_RC9NxjPhPDPwYA8_m8iEG3mQp-SPdeZPdOvwn-gboHo_1 |
| CitedBy_id | crossref_primary_10_37394_232022_2025_5_9 |
| Cites_doi | 10.1007/s11227-020-03476-8 10.1109/TSC.2020.3005347 10.1002/ett.3493 10.1016/B978-0-12-805395-9.00004-6 10.1016/j.sysarc.2024.103291 10.3390/fi11030055 10.1016/j.simpat.2019.102042 10.1109/CSNT60213.2024.10546141 10.1109/TSMCC.2009.2032660 10.1002/spe.2509 10.1145/2677046.2677052 10.1016/j.cosrev.2024.100650 10.1109/JIOT.2019.2896311 10.1016/j.simpat.2019.102029 10.1109/MC.2017.9 10.2298/CSIS200301042M 10.3390/s23073492 10.1145/2757384.2757397 10.15439/2014F503 10.1016/j.compeleceng.2024.109832 10.3390/fi12050089 10.1016/j.simpat.2019.02.003 10.1016/j.jss.2021.110907 10.1016/j.comnet.2010.05.010 10.1109/ICTSA52017.2021.9406542 10.1109/ACCESS.2019.2927895 10.1016/j.future.2013.01.010 10.1145/2491266.2491270 10.1007/978-3-319-57639-8 10.1016/j.bushor.2015.03.008 10.1145/2342509.2342513 10.1007/s11227-020-03425-5 10.1002/spy2.318 10.1007/978-981-10-5861-5_5 10.1109/JIOT.2014.2306328 10.1109/COMST.2018.2814571 10.1145/1869983.1870005 10.1109/TII.2014.2307795 10.1109/JIOT.2020.3004500 10.1109/ACCESS.2018.2877696 10.1016/j.enbuild.2007.04.006 10.1109/ICFEC.2017.20 10.1109/JIOT.2024.3403415 10.1109/ICCCIS60361.2023.10425507 10.1016/j.jclepro.2016.10.006 10.1109/TII.2011.2166794 10.1016/j.cosrev.2021.100391 10.1007/s11227-018-2345-2 10.1002/spe.3033 10.1109/ICTACS59847.2023.10390171 10.1109/ETI4.051663.2021.9619227 10.1109/JIOT.2016.2584538 10.1109/ICSCDS53736.2022.9760897 10.1109/TSC.2022.3181375 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10723-025-09802-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1572-9184 |
| ExternalDocumentID | 10_1007_s10723_025_09802_9 |
| GroupedDBID | -D3 -D4 -D8 -DT -Y2 -~X .86 .VR 06D 0R~ 0VY 1N0 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KZ1 LAK LLZTM LMP M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR |
| ID | FETCH-LOGICAL-c277t-2460bfcad84d3eadae14056cde7734cbfcbc4dcc8f59d72e28449f1913c25cb13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001455904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-7873 |
| IngestDate | Tue Dec 02 07:51:45 EST 2025 Tue Nov 18 21:37:32 EST 2025 Sat Nov 29 07:51:11 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c277t-2460bfcad84d3eadae14056cde7734cbfcbc4dcc8f59d72e28449f1913c25cb13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3182582934 |
| PQPubID | 2043852 |
| ParticipantIDs | proquest_journals_3182582934 crossref_citationtrail_10_1007_s10723_025_09802_9 crossref_primary_10_1007_s10723_025_09802_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Journal of grid computing |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | A Yousefpour (9802_CR7) 2019; 6 I Lera (9802_CR10) 2019; 7 Y Liu (9802_CR55) 2020; 7 J Gubbi (9802_CR44) 2013; 29 9802_CR47 S Svorobej (9802_CR24) 2019; 11 9802_CR48 9802_CR2 M Satyanarayanan (9802_CR5) 2017; 50 M Fahimullah (9802_CR18) 2023; 23 9802_CR46 9802_CR43 M Mukherjee (9802_CR6) 2018; 20 C Sonmez (9802_CR12) 2018; 29 M Zakarya (9802_CR30) 2020; 15 9802_CR8 9802_CR40 L Atzori (9802_CR1) 2010; 54 M Chiang (9802_CR3) 2016; 3 M Zakarya (9802_CR26) 2019; 94 G Yang (9802_CR45) 2014; 10 9802_CR19 M Gill (9802_CR20) 2021; 40 9802_CR16 9802_CR17 BLR Stojkoska (9802_CR49) 2017; 140 9802_CR15 M Ghorbian (9802_CR39) 2024; 120 H Gupta (9802_CR9) 2017; 47 M Zakarya (9802_CR25) 2021; 77 VC Gungor (9802_CR13) 2011; 7 R Belmahdi (9802_CR21) 2021; 26 SP Singh (9802_CR22) 2022; 15 9802_CR57 9802_CR11 I Lee (9802_CR54) 2015; 58 C Mechalikh (9802_CR42) 2021; 18 9802_CR52 9802_CR53 9802_CR50 9802_CR51 SV Margariti (9802_CR31) 2020; 12 9802_CR27 H Ali (9802_CR29) 2021; 175 A Markus (9802_CR34) 2020; 101 AN Lone (9802_CR14) 2023; 6 DP Abreu (9802_CR32) 2020; 101 9802_CR23 M Zakarya (9802_CR28) 2022; 16 R Aghazadeh (9802_CR37) 2023; 53 F Jazayeri (9802_CR35) 2021; 77 C Guerrero (9802_CR56) 2018; 74 9802_CR36 LM Vaquero (9802_CR4) 2014; 44 M Tari (9802_CR38) 2024; 53 T Qayyum (9802_CR41) 2018; 6 9802_CR33 |
| References_xml | – volume: 77 start-page: 4887 year: 2021 ident: 9802_CR35 publication-title: J. Supercomput doi: 10.1007/s11227-020-03476-8 – volume: 15 start-page: 1634 issue: 3 year: 2020 ident: 9802_CR30 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2020.3005347 – volume: 29 start-page: 3493 issue: 11 year: 2018 ident: 9802_CR12 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3493 – ident: 9802_CR8 doi: 10.1016/B978-0-12-805395-9.00004-6 – ident: 9802_CR36 doi: 10.1016/j.sysarc.2024.103291 – volume: 11 start-page: 55 issue: 3 year: 2019 ident: 9802_CR24 publication-title: Future Internet. doi: 10.3390/fi11030055 – volume: 101 start-page: 102042 year: 2020 ident: 9802_CR34 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.102042 – ident: 9802_CR16 doi: 10.1109/CSNT60213.2024.10546141 – ident: 9802_CR47 doi: 10.1109/TSMCC.2009.2032660 – volume: 47 start-page: 1275 issue: 9 year: 2017 ident: 9802_CR9 publication-title: Softw. Pract. Exper. doi: 10.1002/spe.2509 – volume: 44 start-page: 27 issue: 5 year: 2014 ident: 9802_CR4 publication-title: ACM SIGCOMM Comput. Commun. Rev. doi: 10.1145/2677046.2677052 – volume: 53 start-page: 100650 year: 2024 ident: 9802_CR38 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2024.100650 – volume: 6 start-page: 5080 issue: 3 year: 2019 ident: 9802_CR7 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2896311 – volume: 101 start-page: 102029 year: 2020 ident: 9802_CR32 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.102029 – volume: 50 start-page: 30 issue: 1 year: 2017 ident: 9802_CR5 publication-title: Computer doi: 10.1109/MC.2017.9 – volume: 18 start-page: 43 issue: 1 year: 2021 ident: 9802_CR42 publication-title: Comput. Sci. Inf. Syst. doi: 10.2298/CSIS200301042M – volume: 23 start-page: 3492 issue: 7 year: 2023 ident: 9802_CR18 publication-title: Sensors doi: 10.3390/s23073492 – ident: 9802_CR50 doi: 10.1145/2757384.2757397 – ident: 9802_CR11 doi: 10.15439/2014F503 – volume: 120 start-page: 109832 year: 2024 ident: 9802_CR39 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109832 – volume: 12 start-page: 89 issue: 5 year: 2020 ident: 9802_CR31 publication-title: Future Internet doi: 10.3390/fi12050089 – volume: 94 start-page: 43 year: 2019 ident: 9802_CR26 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.02.003 – volume: 175 start-page: 110907 year: 2021 ident: 9802_CR29 publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2021.110907 – volume: 54 start-page: 2787 issue: 15 year: 2010 ident: 9802_CR1 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2010.05.010 – ident: 9802_CR19 doi: 10.1109/ICTSA52017.2021.9406542 – volume: 7 start-page: 91745 year: 2019 ident: 9802_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927895 – volume: 29 start-page: 1645 issue: 7 year: 2013 ident: 9802_CR44 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 – ident: 9802_CR57 doi: 10.1145/2491266.2491270 – ident: 9802_CR52 doi: 10.1007/978-3-319-57639-8 – volume: 58 start-page: 431 issue: 4 year: 2015 ident: 9802_CR54 publication-title: Bus. Horiz. doi: 10.1016/j.bushor.2015.03.008 – ident: 9802_CR2 doi: 10.1145/2342509.2342513 – volume: 15 start-page: 315 issue: 3 year: 2022 ident: 9802_CR22 publication-title: Recent Adv. Comput. Sci. Commun. (Formerly Recent Patents on Computer Science) – volume: 77 start-page: 3959 issue: 4 year: 2021 ident: 9802_CR25 publication-title: J. Supercomput. doi: 10.1007/s11227-020-03425-5 – volume: 6 start-page: 318 issue: 6 year: 2023 ident: 9802_CR14 publication-title: Security and Privacy. doi: 10.1002/spy2.318 – ident: 9802_CR43 doi: 10.1007/978-981-10-5861-5_5 – ident: 9802_CR51 doi: 10.1109/JIOT.2014.2306328 – volume: 20 start-page: 1826 issue: 3 year: 2018 ident: 9802_CR6 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2814571 – ident: 9802_CR46 doi: 10.1145/1869983.1870005 – volume: 10 start-page: 2180 issue: 4 year: 2014 ident: 9802_CR45 publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2014.2307795 – volume: 7 start-page: 6722 issue: 8 year: 2020 ident: 9802_CR55 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3004500 – ident: 9802_CR40 – volume: 6 start-page: 63570 year: 2018 ident: 9802_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877696 – ident: 9802_CR48 doi: 10.1016/j.enbuild.2007.04.006 – ident: 9802_CR53 doi: 10.1109/ICFEC.2017.20 – volume: 26 start-page: 211 issue: 2 year: 2021 ident: 9802_CR21 publication-title: Ingénierie des Systèmes d Inf. – ident: 9802_CR27 doi: 10.1109/JIOT.2024.3403415 – ident: 9802_CR15 doi: 10.1109/ICCCIS60361.2023.10425507 – volume: 140 start-page: 1454 year: 2017 ident: 9802_CR49 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.10.006 – volume: 7 start-page: 529 issue: 4 year: 2011 ident: 9802_CR13 publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2011.2166794 – volume: 40 start-page: 100391 year: 2021 ident: 9802_CR20 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100391 – volume: 74 start-page: 2956 issue: 7 year: 2018 ident: 9802_CR56 publication-title: J. Supercomput. doi: 10.1007/s11227-018-2345-2 – volume: 53 start-page: 811 issue: 3 year: 2023 ident: 9802_CR37 publication-title: Softw. Pract. Exper. doi: 10.1002/spe.3033 – ident: 9802_CR17 doi: 10.1109/ICTACS59847.2023.10390171 – ident: 9802_CR23 doi: 10.1109/ETI4.051663.2021.9619227 – volume: 3 start-page: 854 issue: 6 year: 2016 ident: 9802_CR3 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2584538 – ident: 9802_CR33 doi: 10.1109/ICSCDS53736.2022.9760897 – volume: 16 start-page: 1023 issue: 2 year: 2022 ident: 9802_CR28 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2022.3181375 |
| SSID | ssj0025802 |
| Score | 2.378798 |
| Snippet | This study evaluates a hybrid cloud-fog computing architecture within a smart home environment consisting of 50 IoT devices. The performance is assessed using... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 14 |
| SubjectTerms | Central processing units CPUs Edge computing Energy consumption Energy efficiency Home environment Internet of Things IoT devices Matlab Memory tasks Nodes Performance evaluation Resource allocation Resource efficiency Simulation Smart buildings Smart houses Utilization |
| Title | Performance Evaluation of Hybrid Cloud-Fog Computing Architectures in Smart Home IoT Environments: A Comparative Simulation Study Across Multiple Tools |
| URI | https://www.proquest.com/docview/3182582934 |
| Volume | 23 |
| WOSCitedRecordID | wos001455904200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9184 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025802 issn: 1570-7873 databaseCode: RSV dateStart: 20030301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lePBifWK1yhy8aaDJJs2ut1JaKmgptkpvSzcPKbRd6UPoL_HvmmzTF6jQ8-4M2XlkMpv5ZhC6YzaqKcoMlsRwzAwjOOkbg3UimCE6Sco6a5n_LFqtsNeL2jn08OcNvgO5CeruGjkuR6H1X4fWIxXqxhW8dt7X2RUPlwWGXLgSORF4hMzvLHaj0O4mnEWWRmG_NR2jI3-ChOpS5Scop8enqLCazgDeWc_Qd3uDCYD6uqk3pAaaC4fTgtownSvcSD9gSW2jGFS3LhamMBhDZ2SNC9w0dXhKu1DfAsY9QjWj9N3DoTMY-WFg4MoTF1DNvh5efNEidNN0OD1Hb416t9bEfgwDllSIGaasUk6M7KuQqcAaXl_bpIxXpNJCBEzaR4lkSsrQ8EgJqm3AY5GxeWAgKZcJCS5QfpyO9SUCKriiJuGSMOGw7A7VSyzfSAVC9EmliMhKLbH0PcrdqIxhvOmu7CQfW8nHmeTjqIju1zSfyw4d_75dWmk79t46je2-Zs3HHnzY1V7MrtEhzWzA_ZQpofxsMtc36EB-zQbTyW1mnj-4wt32 |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+Hybrid+Cloud-Fog+Computing+Architectures+in+Smart+Home+IoT+Environments%3A+A+Comparative+Simulation+Study+Across+Multiple+Tools&rft.jtitle=Journal+of+grid+computing&rft.au=Ruchika&rft.au=Chhillar%2C+Rajender+Singh&rft.date=2025-06-01&rft.issn=1570-7873&rft.eissn=1572-9184&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1007%2Fs10723-025-09802-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10723_025_09802_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-7873&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-7873&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-7873&client=summon |