Enhancing Ground Vibration Prediction in Mine Blasting: A Committee Machine Intelligent System Optimized with Metaheuristic Algorithms

Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework employing Committee Machine Intelligent Systems (CMIS) optimized by cutting-edge metaheuristic algorithms to predict ground vibrations. Initiall...

Full description

Saved in:
Bibliographic Details
Published in:Natural resources research (New York, N.Y.) Vol. 34; no. 6; pp. 3449 - 3475
Main Authors: Hasanipanah, Mahdi, Amnieh, Hassan Bakhshandeh
Format: Journal Article
Language:English
Published: New York Springer Nature B.V 01.12.2025
Subjects:
ISSN:1520-7439, 1573-8981
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework employing Committee Machine Intelligent Systems (CMIS) optimized by cutting-edge metaheuristic algorithms to predict ground vibrations. Initially, cascaded feedforward neural networks (CFNN) were developed using Levenberg-Marquardt algorithm and Bayesian regularization (BR). These neural networks were integrated into a CMIS to enhance prediction accuracy. Optimization of the CMIS was carried out using four metaheuristic algorithms, including the grey wolf optimizer (GWO), Harris hawks optimization (HHO), artificial bee colony, and genetic algorithm. Comprehensive evaluation metrics such as quantile-quantile plots, Taylor diagrams, and error analysis were employed to assess model performance. Results indicated that the CMIS model optimized by HHO provided the most accurate ground vibration predictions, surpassing existing models in the literature. Sensitivity analysis identified weight charge per delay as the most critical factor influencing ground vibration. Moreover, the uncertainty analysis indicated that the CFNN-BR model had the narrowest uncertainty band, followed by the CMIS-GWO model. The study underscores the potential of integrating CMIS with metaheuristic algorithms for precise and reliable vibration prediction in mining operations.
AbstractList Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework employing Committee Machine Intelligent Systems (CMIS) optimized by cutting-edge metaheuristic algorithms to predict ground vibrations. Initially, cascaded feedforward neural networks (CFNN) were developed using Levenberg-Marquardt algorithm and Bayesian regularization (BR). These neural networks were integrated into a CMIS to enhance prediction accuracy. Optimization of the CMIS was carried out using four metaheuristic algorithms, including the grey wolf optimizer (GWO), Harris hawks optimization (HHO), artificial bee colony, and genetic algorithm. Comprehensive evaluation metrics such as quantile-quantile plots, Taylor diagrams, and error analysis were employed to assess model performance. Results indicated that the CMIS model optimized by HHO provided the most accurate ground vibration predictions, surpassing existing models in the literature. Sensitivity analysis identified weight charge per delay as the most critical factor influencing ground vibration. Moreover, the uncertainty analysis indicated that the CFNN-BR model had the narrowest uncertainty band, followed by the CMIS-GWO model. The study underscores the potential of integrating CMIS with metaheuristic algorithms for precise and reliable vibration prediction in mining operations.
Author Hasanipanah, Mahdi
Amnieh, Hassan Bakhshandeh
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Hasanipanah
  fullname: Hasanipanah, Mahdi
– sequence: 2
  givenname: Hassan Bakhshandeh
  surname: Amnieh
  fullname: Amnieh, Hassan Bakhshandeh
BookMark eNp9kMtOwzAQRS1UJFrgB1hZYh3wI3FidqUqD4mqSDy2luNMWleJU2xXqHwA303asmLBaq5m7r0jnREauM4BQheUXFFC8utAKcl4QliW9IIWiThCQ5rlPClkQQc7zUiSp1yeoFEIK9KHeJEN0ffULbUz1i3wve82rsLvtvQ62s7hZw-VNXtpHZ5ZB_i20SH25hs8xpOubW2MAHimzXJ3fXQRmsYuwEX8sg0RWjxfR9vaL6jwp41LPIOol7Dxtm8xeNwsOt-v23CGjmvdBDj_nafo7W76OnlInub3j5PxU2JYnseE6jQrSZ3rlKRGSiN0wUQKMhNlSUzKBJFVVQspNeN1AVBCZioDOtU5l5wbfoouD71r331sIES16jbe9S8VZyIjglImehc7uIzvQvBQq7W3rfZbRYna8VYH3qrnrfa81S5U_AkZG_cgo9e2-S_6A85iiWE
CitedBy_id crossref_primary_10_1007_s11053_025_10546_2
crossref_primary_10_1016_j_dt_2025_06_019
Cites_doi 10.1007/s00521-012-0856-y
10.1007/s00366-020-01217-2
10.1007/s00521-020-04822-w
10.1007/s12517-022-09665-4
10.1080/17480930.2020.1734151
10.3390/su15065470
10.1007/s10064-024-03987-1
10.1038/s41598-024-81218-z
10.1016/j.fuel.2018.08.136
10.1016/j.ress.2022.109032
10.3390/su15108424
10.1007/s00366-021-01381-z
10.3389/fpubh.2022.1094771
10.1016/j.advengsoft.2013.12.007
10.1007/s11053-019-09461-0
10.1007/s00500-023-08233-6
10.1007/s10064-025-04178-2
10.1007/s00521-016-2577-0
10.1016/j.measurement.2024.115373
10.1007/s00366-016-0462-1
10.1016/j.jtice.2020.08.001
10.1007/s11053-019-09597-z
10.1007/s00366-020-00937-9
10.1007/s11803-022-2125-0
10.1007/s11053-021-09890-w
10.1016/j.jclepro.2017.09.092
10.1016/j.soildyn.2010.05.005
10.1007/s00366-009-0157-y
10.1016/j.rockmb.2024.100166
10.1007/s00366-017-0501-6
10.3390/math10081271
10.1038/s41598-019-50262-5
10.7551/mitpress/1090.001.0001
10.1016/j.eswa.2023.121616
10.1016/j.ijhydene.2020.09.145
10.3390/sym15010054
10.1007/s12665-016-5747-6
10.1016/j.coal.2023.104294
10.1007/s12530-018-9255-7
10.1038/s41598-023-33796-7
10.1007/s13762-016-1192-z
10.1007/s00366-019-00754-9
10.1007/s00366-021-01418-3
10.1007/s00521-021-06776-z
10.3390/app13127166
10.1016/j.future.2019.02.028
10.3390/geosciences13100294
10.1007/s12665-016-5961-2
10.1007/s00366-019-00711-6
10.1177/1077546312437002
10.1007/s00366-019-00908-9
10.1016/j.tust.2022.104978
10.1016/j.measurement.2022.111887
10.1177/09574565221114662
10.1007/s11053-020-09730-3
10.1021/acs.energyfuels.0c00114
10.1007/s00366-021-01393-9
10.1109/ACCESS.2022.3193573
10.3390/app13053128
10.1007/s10064-020-01788-w
10.1038/s41598-024-70939-w
10.1007/s11600-020-00532-y
10.1007/s00521-021-06600-8
10.1007/s11600-019-00304-3
10.1061/(ASCE)0887-3828(2005)19:3(222)
10.1080/17480930.2023.2254147
10.1007/s11053-019-09492-7
10.1007/s10064-014-0657-x
10.1016/j.jrmge.2021.07.007
10.1007/s10064-022-03047-6
10.1016/j.measurement.2025.117180
10.1007/s11053-020-09764-7
10.1007/s10064-024-03941-1
10.1016/j.rser.2017.07.049
10.1038/s41598-020-76569-2
10.3390/app9183755
10.1007/s40515-023-00343-w
10.1007/s11053-023-10259-4
10.1007/s00366-019-00816-y
10.1007/s11053-019-09515-3
10.1016/j.measurement.2015.07.019
10.1007/s10064-024-03980-8
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2025.
Copyright_xml – notice: International Association for Mathematical Geosciences 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11053-025-10518-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1573-8981
EndPage 3475
ExternalDocumentID 10_1007_s11053_025_10518_6
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~A9
~KM
AESKC
ID FETCH-LOGICAL-c277t-1a45b0f7a404c99c6a8264e956bb0c42609ddf699a23f8eebe5cdcea4a73933c3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506890100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-7439
IngestDate Wed Nov 05 08:45:14 EST 2025
Sat Nov 29 06:58:10 EST 2025
Tue Nov 18 21:50:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-1a45b0f7a404c99c6a8264e956bb0c42609ddf699a23f8eebe5cdcea4a73933c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3265061126
PQPubID 2043663
PageCount 27
ParticipantIDs proquest_journals_3265061126
crossref_primary_10_1007_s11053_025_10518_6
crossref_citationtrail_10_1007_s11053_025_10518_6
PublicationCentury 2000
PublicationDate 2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Natural resources research (New York, N.Y.)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References P Ragam (10518_CR67) 2022; 53
J Ye (10518_CR81) 2021; 30
X Ding (10518_CR13) 2020; 37
H Guo (10518_CR29) 2021; 37
ML Li (10518_CR50) 2023; 134
PP Roy (10518_CR69) 1991; 239
L Nikakhtar (10518_CR62) 2023; 14
H Fattahi (10518_CR21) 2023; 28
C Li (10518_CR48) 2023; 13
M Jamei (10518_CR41) 2021; 13
X Liao (10518_CR51) 2020; 36
J Zhou (10518_CR85) 2020; 79
Z Luo (10518_CR52) 2020; 36
M Hasanipanah (10518_CR32) 2015; 75
B He (10518_CR34) 2024; 237
J Zeng (10518_CR83) 2022; 38
M Nait Amar (10518_CR56) 2020; 45
H Nguyen (10518_CR61) 2023; 38
J Zhou (10518_CR86) 2021; 37
H Nguyen (10518_CR60) 2023; 231
10518_CR28
A Rabbani (10518_CR66) 2023; 11
T Dogruer (10518_CR18) 2023; 15
H Yang (10518_CR80) 2022; 38
J Zhou (10518_CR88) 2022; 38
Y Fissha (10518_CR22) 2023; 13
K Song (10518_CR70) 2023; 82
B Wu (10518_CR73) 2024; 83
H Nguyen (10518_CR59) 2023; 275
Y Fissha (10518_CR24) 2025; 4
B Ke (10518_CR44) 2021; 30
C Li (10518_CR49) 2023; 32
D Karaboga (10518_CR43) 2005
DJ Armaghani (10518_CR4) 2018; 29
S Ghoraba (10518_CR27) 2016; 75
M Khandelwal (10518_CR46) 2011; 27
AA Heidari (10518_CR35) 2019; 97
NJ Nilsson (10518_CR63) 1965
J Zhou (10518_CR87) 2021; 35
Y Jiang (10518_CR42) 2022; 10
E Ghasemi (10518_CR26) 2013; 19
W Chen (10518_CR9) 2019; 9
H Yang (10518_CR77) 2020; 29
Z Zhou (10518_CR90) 2024; 83
H Fattahi (10518_CR20) 2021; 30
M Monjezi (10518_CR55) 2013; 22
X Ding (10518_CR17) 2025; 84
JH Holland (10518_CR38) 1992
Y Qiu (10518_CR65) 2022; 38
10518_CR12
H Yang (10518_CR79) 2022; 15
C Wang (10518_CR72) 2023; 15
A Banharnsakun (10518_CR6) 2019; 10
X Ding (10518_CR16) 2025; 250
B Keshtegar (10518_CR45) 2023; 10
H Nguyen (10518_CR58) 2019; 67
A Rostami (10518_CR68) 2019; 236
Y Chen (10518_CR10) 2022; 10
P Yan (10518_CR74) 2016; 75
Y Yan (10518_CR75) 2024; 14
EF Gad (10518_CR25) 2005; 19
XN Bui (10518_CR7) 2019; 9
RS Faradonbeh (10518_CR19) 2017; 33
J Huang (10518_CR40) 2020; 10
AI Lawal (10518_CR47) 2021; 69
A Hemmati-Sarapardeh (10518_CR37) 2020; 34
A Agrawal (10518_CR2) 2022; 202
M Hasanipanah (10518_CR33) 2017; 33
H Yang (10518_CR78) 2020; 29
C Zhu (10518_CR91) 2022; 21
M Parsajoo (10518_CR64) 2022; 34
H Yang (10518_CR76) 2019; 31
M Nait Amar (10518_CR57) 2020; 113
J Sun (10518_CR71) 2024; 238
X Ding (10518_CR15) 2023; 15
D Zai (10518_CR82) 2024; 83
M Amiri (10518_CR3) 2020; 32
A Hemmati-Sarapardeh (10518_CR36) 2018; 81
M Monjezi (10518_CR54) 2010; 30
X Ding (10518_CR14) 2023; 33
Y Fissha (10518_CR23) 2024; 14
S Mirjalili (10518_CR53) 2014; 69
E Bakhtavar (10518_CR5) 2017; 14
J Guo (10518_CR30) 2023; 13
MSS Abujazar (10518_CR1) 2018; 170
X Zhang (10518_CR84) 2020; 29
J Zhou (10518_CR89) 2023; 40
Y Dai (10518_CR11) 2022; 34
XN Bui (10518_CR8) 2020; 29
M Hajihassani (10518_CR31) 2015; 74
S Hosseini (10518_CR39) 2023; 13
References_xml – volume: 22
  start-page: 1637
  issue: 7–8
  year: 2013
  ident: 10518_CR55
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-012-0856-y
– volume: 38
  start-page: 2469
  year: 2022
  ident: 10518_CR80
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-01217-2
– volume: 32
  start-page: 14681
  year: 2020
  ident: 10518_CR3
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-04822-w
– volume: 15
  start-page: 461
  year: 2022
  ident: 10518_CR79
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-022-09665-4
– volume: 35
  start-page: 48
  issue: 1
  year: 2021
  ident: 10518_CR87
  publication-title: International Journal of Mining, Reclamation and Environment
  doi: 10.1080/17480930.2020.1734151
– volume: 15
  start-page: 5470
  year: 2023
  ident: 10518_CR72
  publication-title: Sustainability
  doi: 10.3390/su15065470
– volume: 83
  start-page: 493
  year: 2024
  ident: 10518_CR82
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-024-03987-1
– volume: 14
  start-page: 30793
  year: 2024
  ident: 10518_CR75
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-81218-z
– volume: 236
  start-page: 110
  year: 2019
  ident: 10518_CR68
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.08.136
– ident: 10518_CR28
– volume: 231
  year: 2023
  ident: 10518_CR60
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2022.109032
– volume: 15
  start-page: 8424
  issue: 10
  year: 2023
  ident: 10518_CR15
  publication-title: Sustainability
  doi: 10.3390/su15108424
– volume: 38
  start-page: 2069
  year: 2022
  ident: 10518_CR83
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-021-01381-z
– volume: 10
  start-page: 1094771
  year: 2023
  ident: 10518_CR45
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2022.1094771
– volume: 69
  start-page: 46
  year: 2014
  ident: 10518_CR53
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 29
  start-page: 571
  year: 2020
  ident: 10518_CR8
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09461-0
– volume: 28
  start-page: 461
  issue: 1
  year: 2023
  ident: 10518_CR21
  publication-title: Soft Computing
  doi: 10.1007/s00500-023-08233-6
– volume: 84
  start-page: 150
  issue: 3
  year: 2025
  ident: 10518_CR17
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-025-04178-2
– volume: 29
  start-page: 457
  issue: 9
  year: 2018
  ident: 10518_CR4
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2577-0
– volume: 238
  year: 2024
  ident: 10518_CR71
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115373
– volume: 33
  start-page: 173
  year: 2017
  ident: 10518_CR33
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0462-1
– volume: 113
  start-page: 165
  year: 2020
  ident: 10518_CR57
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
  doi: 10.1016/j.jtice.2020.08.001
– volume: 29
  start-page: 807
  year: 2020
  ident: 10518_CR78
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09597-z
– volume: 37
  start-page: 2273
  issue: 3
  year: 2020
  ident: 10518_CR13
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-00937-9
– volume: 21
  start-page: 861
  year: 2022
  ident: 10518_CR91
  publication-title: Earthquake Engineering and Engineering Vibration
  doi: 10.1007/s11803-022-2125-0
– volume-title: Learning Machines: Foundations of Trainable Pattern-Classifying Systems
  year: 1965
  ident: 10518_CR63
– volume: 30
  start-page: 3853
  year: 2021
  ident: 10518_CR44
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09890-w
– volume: 170
  start-page: 147
  year: 2018
  ident: 10518_CR1
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.09.092
– volume: 30
  start-page: 1233
  issue: 11
  year: 2010
  ident: 10518_CR54
  publication-title: Soil Dynamics and Earthquake Engineering
  doi: 10.1016/j.soildyn.2010.05.005
– volume: 27
  start-page: 117
  issue: 2
  year: 2011
  ident: 10518_CR46
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-009-0157-y
– volume: 4
  year: 2025
  ident: 10518_CR24
  publication-title: Rock Mechanics Bulletin
  doi: 10.1016/j.rockmb.2024.100166
– volume: 239
  start-page: 215
  year: 1991
  ident: 10518_CR69
  publication-title: Colliery Guardian
– volume: 33
  start-page: 835
  issue: 4
  year: 2017
  ident: 10518_CR19
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-017-0501-6
– volume: 14
  start-page: 217
  issue: 1
  year: 2023
  ident: 10518_CR62
  publication-title: Journal of Mining and Environment
– volume: 10
  start-page: 1271
  issue: 8
  year: 2022
  ident: 10518_CR10
  publication-title: Mathematics
  doi: 10.3390/math10081271
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10518_CR7
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-50262-5
– volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
  year: 1992
  ident: 10518_CR38
  doi: 10.7551/mitpress/1090.001.0001
– volume: 237
  year: 2024
  ident: 10518_CR34
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121616
– volume: 45
  start-page: 33274
  year: 2020
  ident: 10518_CR56
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.145
– volume: 15
  start-page: 54
  issue: 1
  year: 2023
  ident: 10518_CR18
  publication-title: Symmetry
  doi: 10.3390/sym15010054
– volume: 75
  start-page: 949
  year: 2016
  ident: 10518_CR74
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-5747-6
– volume: 33
  start-page: 567
  issue: 6
  year: 2023
  ident: 10518_CR14
  publication-title: Geomechanics and Engineering
– volume: 275
  year: 2023
  ident: 10518_CR59
  publication-title: International Journal of Coal Geology
  doi: 10.1016/j.coal.2023.104294
– volume: 10
  start-page: 679
  year: 2019
  ident: 10518_CR6
  publication-title: Evolving Systems
  doi: 10.1007/s12530-018-9255-7
– volume: 13
  start-page: 6591
  year: 2023
  ident: 10518_CR39
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-33796-7
– volume: 14
  start-page: 717
  year: 2017
  ident: 10518_CR5
  publication-title: International journal of environmental science and technology
  doi: 10.1007/s13762-016-1192-z
– volume: 36
  start-page: 1117
  year: 2020
  ident: 10518_CR52
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00754-9
– volume: 38
  start-page: 4197
  year: 2022
  ident: 10518_CR88
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-021-01418-3
– volume: 34
  start-page: 6273
  year: 2022
  ident: 10518_CR11
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06776-z
– volume: 13
  start-page: 7166
  issue: 12
  year: 2023
  ident: 10518_CR30
  publication-title: Applied Sciences
  doi: 10.3390/app13127166
– volume: 97
  start-page: 849
  year: 2019
  ident: 10518_CR35
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 13
  start-page: 294
  year: 2023
  ident: 10518_CR48
  publication-title: Geosciences
  doi: 10.3390/geosciences13100294
– volume: 40
  start-page: 617
  issue: 2
  year: 2023
  ident: 10518_CR89
  publication-title: Mining, Metallurgy & Exploration
– volume: 75
  start-page: 1137
  year: 2016
  ident: 10518_CR27
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-5961-2
– volume: 36
  start-page: 499
  year: 2020
  ident: 10518_CR51
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00711-6
– volume: 19
  start-page: 755
  issue: 5
  year: 2013
  ident: 10518_CR26
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546312437002
– volume: 37
  start-page: 1679
  year: 2021
  ident: 10518_CR86
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00908-9
– volume: 134
  year: 2023
  ident: 10518_CR50
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2022.104978
– volume: 202
  year: 2022
  ident: 10518_CR2
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111887
– ident: 10518_CR12
– volume: 53
  start-page: 404
  year: 2022
  ident: 10518_CR67
  publication-title: Noise & Vibration Worldwide
  doi: 10.1177/09574565221114662
– volume: 30
  start-page: 225
  year: 2021
  ident: 10518_CR81
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09730-3
– volume: 34
  start-page: 4761
  year: 2020
  ident: 10518_CR37
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.0c00114
– volume: 38
  start-page: 4145
  issue: Suppl 5
  year: 2022
  ident: 10518_CR65
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-021-01393-9
– volume: 10
  start-page: 77857
  year: 2022
  ident: 10518_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3193573
– volume: 13
  start-page: 3128
  issue: 5
  year: 2023
  ident: 10518_CR22
  publication-title: Applied Sciences
  doi: 10.3390/app13053128
– volume-title: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report-tr06
  year: 2005
  ident: 10518_CR43
– volume: 79
  start-page: 4265
  year: 2020
  ident: 10518_CR85
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-020-01788-w
– volume: 14
  start-page: 20026
  year: 2024
  ident: 10518_CR23
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-70939-w
– volume: 69
  start-page: 161
  year: 2021
  ident: 10518_CR47
  publication-title: Acta Geophysica
  doi: 10.1007/s11600-020-00532-y
– volume: 34
  start-page: 3263
  year: 2022
  ident: 10518_CR64
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06600-8
– volume: 31
  start-page: 629
  issue: 6
  year: 2019
  ident: 10518_CR76
  publication-title: Steel and Composite Structures
– volume: 67
  start-page: 1025
  issue: 4
  year: 2019
  ident: 10518_CR58
  publication-title: Acta Geophysica
  doi: 10.1007/s11600-019-00304-3
– volume: 19
  start-page: 222
  issue: 3
  year: 2005
  ident: 10518_CR25
  publication-title: Journal of Performance of Constructed Facilities
  doi: 10.1061/(ASCE)0887-3828(2005)19:3(222)
– volume: 38
  start-page: 99
  issue: 2
  year: 2023
  ident: 10518_CR61
  publication-title: International Journal of Mining, Reclamation and Environment
  doi: 10.1080/17480930.2023.2254147
– volume: 29
  start-page: 711
  year: 2020
  ident: 10518_CR84
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09492-7
– volume: 74
  start-page: 873
  year: 2015
  ident: 10518_CR31
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-014-0657-x
– volume: 13
  start-page: 1438
  issue: 6
  year: 2021
  ident: 10518_CR41
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2021.07.007
– volume: 82
  start-page: 27
  year: 2023
  ident: 10518_CR70
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-022-03047-6
– volume: 250
  year: 2025
  ident: 10518_CR16
  publication-title: Measurement
  doi: 10.1016/j.measurement.2025.117180
– volume: 30
  start-page: 1849
  year: 2021
  ident: 10518_CR20
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09764-7
– volume: 83
  start-page: 444
  year: 2024
  ident: 10518_CR90
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-024-03941-1
– volume: 81
  start-page: 313
  year: 2018
  ident: 10518_CR36
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2017.07.049
– volume: 10
  start-page: 1
  year: 2020
  ident: 10518_CR40
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-76569-2
– volume: 9
  start-page: 3755
  issue: 18
  year: 2019
  ident: 10518_CR9
  publication-title: Applied Sciences
  doi: 10.3390/app9183755
– volume: 11
  start-page: 1708
  issue: 4
  year: 2023
  ident: 10518_CR66
  publication-title: Transportation Infrastructure Geotechnology
  doi: 10.1007/s40515-023-00343-w
– volume: 32
  start-page: 2995
  issue: 6
  year: 2023
  ident: 10518_CR49
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-023-10259-4
– volume: 37
  start-page: 173
  year: 2021
  ident: 10518_CR29
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00816-y
– volume: 29
  start-page: 739
  year: 2020
  ident: 10518_CR77
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09515-3
– volume: 75
  start-page: 289
  year: 2015
  ident: 10518_CR32
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.019
– volume: 83
  start-page: 461
  year: 2024
  ident: 10518_CR73
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-024-03980-8
SSID ssj0007385
Score 2.4005857
Snippet Ground vibrations resulting from mine blasting pose significant risks to nearby structures and the environment. This paper introduces an advanced framework...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3449
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bayesian analysis
Blasting
Error analysis
Explosives
Genetic algorithms
Ground motion
Heuristic methods
Mathematical models
Neural networks
Optimization
Optimization algorithms
Predictions
Quantiles
Regularization
Sensitivity analysis
Support vector machines
Swarm intelligence
Uncertainty analysis
Variables
Velocity
Vibration
Vibration analysis
Vibrations
Title Enhancing Ground Vibration Prediction in Mine Blasting: A Committee Machine Intelligent System Optimized with Metaheuristic Algorithms
URI https://www.proquest.com/docview/3265061126
Volume 34
WOSCitedRecordID wos001506890100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMeDiIIefKyKb3LwpsUmTR_xtoqrHlYXX3graZpqQau0VdAP4Od2Jq2rCyp4K6UJJZPHfzLJbwjZ4lGQKRFoB9Sx6wgutBMl4LgKzZlgPNMsVTbZRHh6Gt3cyMEY2fk1gr9bwQLlY6wRiZk-ixzka7OAY7qC84vr4bSLWBYLRwV_CFV2e0Pm5ypGV6HRSdiuLL3Z__3THJlpFSTtNiafJ2Om6JDpb1zBDpk8svl6XxfI-2Fxh0SN4pbiLlOR0mv0j9EadFBikMY-5gXtQ3G6D1oaz0Hv0S7FqyN5XRtD-_bApaEnQ3xnTRvSOT2DGechfzMpxQ1d2je1ujPPDf2Zdu9vH0t4_VAtkqve4eXBsdOmXnA0D8PaYUr4iZuFSrhCS6kDBW6IMOBMJYmrkWov0zQLpFTcyyIDPcHXqTZKKCTsedpbIuPFY2GWCZW-cqMMhr2WGnpAqHQmXRWlHgftFQm2QtinKWLdcskxPcZ9_EVUxtaOobVj29pxsEK2h2WeGirHn1-vf1o4bkdoFYNs9UHLMB6s_quyNTLFrd3xRMs6Ga_LZ7NBJvRLnVflpu2SHyqt18Y
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Ground+Vibration+Prediction+in+Mine+Blasting%3A+A+Committee+Machine+Intelligent+System+Optimized+with+Metaheuristic+Algorithms&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Hasanipanah%2C+Mahdi&rft.au=Amnieh%2C+Hassan+Bakhshandeh&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=34&rft.issue=6&rft.spage=3449&rft.epage=3475&rft_id=info:doi/10.1007%2Fs11053-025-10518-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon