Part-Aware Shape Generation With Latent 3D Diffusion of Neural Voxel Fields
This article introduces a novel latent 3D diffusion model for generating neural voxel fields with precise part-aware structures and high-quality textures. In comparison to existing methods, this approach incorporates two key designs to guarantee high-quality and accurate part-aware generation. On on...
Saved in:
| Published in: | IEEE transactions on visualization and computer graphics Vol. 31; no. 10; pp. 8057 - 8069 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.10.2025
|
| Subjects: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article introduces a novel latent 3D diffusion model for generating neural voxel fields with precise part-aware structures and high-quality textures. In comparison to existing methods, this approach incorporates two key designs to guarantee high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, incorporating part-aware information into the diffusion process and allowing generation at significantly higher resolutions to capture rich textural and geometric details accurately. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding accurate part decomposition and producing high-quality rendering results. Importantly, part-aware learning establishes structural relationships to generate texture information for similar regions, thereby facilitating high-quality rendering results. We evaluate our approach across eight different data classes through extensive experimentation and comparisons with state-of-the-art methods. The results demonstrate that our proposed method has superior generative capabilities in part-aware shape generation, outperforming existing state-of-the-art methods. Moreover, we have conducted image- and text-guided shape generation via the conditioned diffusion process, showcasing the advanced potential in multi-modal guided shape generation. |
|---|---|
| AbstractList | This article introduces a novel latent 3D diffusion model for generating neural voxel fields with precise part-aware structures and high-quality textures. In comparison to existing methods, this approach incorporates two key designs to guarantee high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, incorporating part-aware information into the diffusion process and allowing generation at significantly higher resolutions to capture rich textural and geometric details accurately. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding accurate part decomposition and producing high-quality rendering results. Importantly, part-aware learning establishes structural relationships to generate texture information for similar regions, thereby facilitating high-quality rendering results. We evaluate our approach across eight different data classes through extensive experimentation and comparisons with state-of-the-art methods. The results demonstrate that our proposed method has superior generative capabilities in part-aware shape generation, outperforming existing state-of-the-art methods. Moreover, we have conducted image- and text-guided shape generation via the conditioned diffusion process, showcasing the advanced potential in multi-modal guided shape generation. This article introduces a novel latent 3D diffusion model for generating neural voxel fields with precise part-aware structures and high-quality textures. In comparison to existing methods, this approach incorporates two key designs to guarantee high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, incorporating part-aware information into the diffusion process and allowing generation at significantly higher resolutions to capture rich textural and geometric details accurately. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding accurate part decomposition and producing high-quality rendering results. Importantly, part-aware learning establishes structural relationships to generate texture information for similar regions, thereby facilitating high-quality rendering results. We evaluate our approach across eight different data classes through extensive experimentation and comparisons with state-of-the-art methods. The results demonstrate that our proposed method has superior generative capabilities in part-aware shape generation, outperforming existing state-of-the-art methods. Moreover, we have conducted image- and text-guided shape generation via the conditioned diffusion process, showcasing the advanced potential in multi-modal guided shape generation.This article introduces a novel latent 3D diffusion model for generating neural voxel fields with precise part-aware structures and high-quality textures. In comparison to existing methods, this approach incorporates two key designs to guarantee high-quality and accurate part-aware generation. On one hand, we introduce a latent 3D diffusion process for neural voxel fields, incorporating part-aware information into the diffusion process and allowing generation at significantly higher resolutions to capture rich textural and geometric details accurately. On the other hand, a part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding accurate part decomposition and producing high-quality rendering results. Importantly, part-aware learning establishes structural relationships to generate texture information for similar regions, thereby facilitating high-quality rendering results. We evaluate our approach across eight different data classes through extensive experimentation and comparisons with state-of-the-art methods. The results demonstrate that our proposed method has superior generative capabilities in part-aware shape generation, outperforming existing state-of-the-art methods. Moreover, we have conducted image- and text-guided shape generation via the conditioned diffusion process, showcasing the advanced potential in multi-modal guided shape generation. |
| Author | Zou, Shilong Huang, Yuhang Xu, Kai Liu, Xinwang |
| Author_xml | – sequence: 1 givenname: Yuhang orcidid: 0000-0001-9350-7713 surname: Huang fullname: Huang, Yuhang organization: School of Computer, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Shilong orcidid: 0009-0004-1124-3830 surname: Zou fullname: Zou, Shilong organization: School of Computer, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Xinwang orcidid: 0000-0001-9066-1475 surname: Liu fullname: Liu, Xinwang organization: School of Computer, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Kai orcidid: 0000-0002-9054-0216 surname: Xu fullname: Xu, Kai email: kevin.kai.xu@gmail.com organization: School of Computer, National University of Defense Technology, Changsha, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40261778$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1Lw0AURQepWFv9AYLILN2kzvdMlqW1VSwqWOsyTCcvNJImdSZB_fcmtIqrd-GdexdngHplVQJCF5SMKCXxzXI1mY8YYXLEpWJG0yN0SmNBIyKJ6rWZaB0xxVQfDUJ4J4QKYeIT1BeEKaq1OUUPz9bX0fjTesAvG7sDPIcSvK3zqsRveb3BC1tDWWM-xdM8y5rQPaoMP0LjbYFX1RcUeJZDkYYzdJzZIsD54Q7R6-x2ObmLFk_z-8l4ETmmVR1la8PTWGTccCEgpcwK6yiVjpi1NE4pINYSF1spLFMpaO6EyJiLjdZUGsmH6Hq_u_PVRwOhTrZ5cFAUtoSqCQmnMdetIMla9OqANustpMnO51vrv5NfAS1A94DzVQgesj-EkqSTnHSSk05ycpDcdi73nRwA_vGx5pxR_gPHxHWP |
| CODEN | ITVGEA |
| Cites_doi | 10.1109/CVPR42600.2020.00765 10.1109/TVCG.2024.3357568 10.1109/ICCV48922.2021.01404 10.1145/3635304 10.1007/978-3-030-20893-6_7 10.1109/ICCV51070.2023.00215 10.1109/ICCV51070.2023.01328 10.1109/TVCG.2018.2865317 10.1007/978-3-319-46723-8_49 10.1007/978-3-031-20062-5_5 10.1109/CVPR46437.2021.00574 10.1109/cvpr52729.2023.00434 10.1109/TVCG.2023.3265306 10.48550/ARXIV.1706.03762 10.1109/CVPR52729.2023.00421 10.1109/ICCV.2019.01008 10.1109/TVCG.2021.3051251 10.1109/ICCV48922.2021.00986 10.1109/CVPR42600.2020.00591 10.1145/3528223.3530084 10.1109/ICCV51070.2023.02100 10.1109/TVCG.2021.3126659 10.1145/3592442 10.1145/3450626.3459766 10.1109/ICCV51070.2023.01311 10.1109/CVPR42600.2020.00091 10.1109/CVPR42600.2020.00857 10.1109/cvpr52733.2024.00951 10.1109/CVPR52688.2022.01042 10.1109/TVCG.2020.3029759 10.1007/978-3-030-58452-8_24 10.1109/CVPR52688.2022.00538 10.1145/3618312 10.1109/CVPR52729.2023.01211 10.1109/CVPR52688.2022.01565 10.1007/978-3-030-58571-6_16 10.1109/ICCV51070.2023.00229 10.1109/TVCG.2021.3131712 10.1109/CVPR.2019.00100 10.1145/325334.325242 10.1609/aaai.v33i01.33018279 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TVCG.2025.3562871 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 8069 |
| ExternalDocumentID | 40261778 10_1109_TVCG_2025_3562871 10973321 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Major Program of Xiangjiang Laboratory grantid: 23XJ01009 – fundername: Young Elite Scientists Sponsorship Program by CAST grantid: 2023QNRC001 – fundername: NUDT Research grantid: ZK22-52 – fundername: Natural Science Foundation of Hainan Province; Natural Science Foundation of Hunan Province of China grantid: 2022RC1104 funderid: 10.13039/501100004761 – fundername: National Natural Science Foundation of China; NSFC grantid: 62325211; 62132021; 62372457 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c276t-fb83d94f38344ed12a4ac115c08b58c66e0aa0c9a54a26de73c44f2c987715853 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001567023900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sat Nov 01 14:34:53 EDT 2025 Tue Sep 09 02:32:15 EDT 2025 Sat Nov 29 07:34:05 EST 2025 Wed Sep 17 06:32:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c276t-fb83d94f38344ed12a4ac115c08b58c66e0aa0c9a54a26de73c44f2c987715853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9054-0216 0000-0001-9350-7713 0000-0001-9066-1475 0009-0004-1124-3830 |
| PMID | 40261778 |
| PQID | 3193711052 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10973321 crossref_primary_10_1109_TVCG_2025_3562871 proquest_miscellaneous_3193711052 pubmed_primary_40261778 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref56 ref59 Gu (ref14) ref53 Huang (ref49) 2023 Achlioptas (ref22) Chang (ref57) 2015 ref10 Song (ref50) ref17 ref16 ref19 ref18 Schwarz (ref26) Dupont (ref54) Sohl-Dickstein (ref33) ref51 Qian (ref37) 2023 ref46 Skorokhodov (ref25) ref45 ref48 Dhariwal (ref34) ref47 ref42 ref41 ref44 Denninger (ref58) ref43 ref8 ref7 ref9 ref4 ref3 ref6 Radford (ref20) ref5 ref40 Ho (ref21) ref35 Wang (ref11) ref31 ref30 ref32 Zhou (ref15) 2021 Ho (ref52) 2022 ref39 ref38 Bautista (ref55) Gao (ref1) ref24 ref23 Poole (ref36) ref28 ref27 Wu (ref2) ref29 ref60 ref62 ref61 |
| References_xml | – start-page: 8780 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref34 article-title: Diffusion models beat GANs on image synthesis – start-page: 2256 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref33 article-title: Deep unsupervised learning using nonequilibrium thermodynamics – ident: ref44 doi: 10.1109/CVPR42600.2020.00765 – ident: ref35 doi: 10.1109/TVCG.2024.3357568 – start-page: 3000 volume-title: Proc. Int. Conf. Learn. Representations ident: ref50 article-title: Denoising diffusion implicit models – ident: ref27 doi: 10.1109/ICCV48922.2021.01404 – ident: ref29 doi: 10.1145/3635304 – ident: ref59 doi: 10.1007/978-3-030-20893-6_7 – ident: ref24 doi: 10.1109/ICCV51070.2023.00215 – ident: ref45 doi: 10.1109/ICCV51070.2023.01328 – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref1 article-title: GET3D: A generative model of high quality 3D textured shapes learned from images – ident: ref5 doi: 10.1109/TVCG.2018.2865317 – ident: ref56 doi: 10.1007/978-3-319-46723-8_49 – ident: ref3 doi: 10.1007/978-3-031-20062-5_5 – start-page: 5694 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref54 article-title: From data to functa: Your data point is a function and you can treat it like one – ident: ref12 doi: 10.1109/CVPR46437.2021.00574 – ident: ref17 doi: 10.1109/cvpr52729.2023.00434 – ident: ref42 doi: 10.1109/TVCG.2023.3265306 – ident: ref53 doi: 10.48550/ARXIV.1706.03762 – year: 2021 ident: ref15 article-title: CIPS-3D: A 3D-aware generator of GANs based on conditionally-independent pixel synthesis – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref55 article-title: GAUDI: A neural architect for immersive 3D scene generation – ident: ref18 doi: 10.1109/CVPR52729.2023.00421 – start-page: 8003 volume-title: Proc. 11th Int. Conf. Learn. Representations ident: ref36 article-title: DreamFusion: Text-to-3D using 2D diffusion – ident: ref4 doi: 10.1109/ICCV.2019.01008 – start-page: 50 volume-title: Proc. Int. Conf. Robot.: Sci. Syst. ident: ref58 article-title: BlenderProc: Reducing the reality gap with photorealistic rendering – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: EpiGRAF: Rethinking training of 3D GANs – ident: ref8 doi: 10.1109/TVCG.2021.3051251 – ident: ref61 doi: 10.1109/ICCV48922.2021.00986 – year: 2022 ident: ref52 article-title: Classifier-free diffusion guidance – ident: ref28 doi: 10.1109/CVPR42600.2020.00591 – ident: ref16 doi: 10.1145/3528223.3530084 – ident: ref19 doi: 10.1109/ICCV51070.2023.02100 – ident: ref7 doi: 10.1109/TVCG.2021.3126659 – ident: ref30 doi: 10.1145/3592442 – ident: ref41 doi: 10.1145/3450626.3459766 – ident: ref31 doi: 10.1109/ICCV51070.2023.01311 – ident: ref43 doi: 10.1109/CVPR42600.2020.00091 – year: 2023 ident: ref49 article-title: Decoupled diffusion models: Simultaneous image to zero and zero to noise – start-page: 33999 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: VoxGRAF: Fast 3D-aware image synthesis with sparse voxel grids – ident: ref46 doi: 10.1109/CVPR42600.2020.00857 – ident: ref38 doi: 10.1109/cvpr52733.2024.00951 – ident: ref51 doi: 10.1109/CVPR52688.2022.01042 – year: 2015 ident: ref57 article-title: ShapeNet: An information-rich 3D model repository – start-page: 40 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref22 article-title: Learning representations and generative models for 3D point clouds – ident: ref6 doi: 10.1109/TVCG.2020.3029759 – ident: ref47 doi: 10.1007/978-3-030-58452-8_24 – ident: ref48 doi: 10.1109/CVPR52688.2022.00538 – ident: ref32 doi: 10.1145/3618312 – ident: ref39 doi: 10.1109/CVPR52729.2023.01211 – ident: ref13 doi: 10.1109/CVPR52688.2022.01565 – ident: ref23 doi: 10.1007/978-3-030-58571-6_16 – ident: ref40 doi: 10.1109/ICCV51070.2023.00229 – start-page: 8748 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref20 article-title: Learning transferable visual models from natural language supervision – ident: ref9 doi: 10.1109/TVCG.2021.3131712 – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref21 article-title: Denoising diffusion probabilistic models – ident: ref10 doi: 10.1109/CVPR.2019.00100 – start-page: 82 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref2 article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling – start-page: 1005 volume-title: Proc. 10th Int. Conf. Learn. Representations ident: ref14 article-title: StyleNeRF: A style-based 3D aware generator for high-resolution image synthesis – ident: ref62 doi: 10.1145/325334.325242 – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref11 article-title: PIE-NET: Parametric inference of point cloud edges – year: 2023 ident: ref37 article-title: Magic123: One image to high-quality 3D object generation using both 2D and 3D diffusion priors – ident: ref60 doi: 10.1609/aaai.v33i01.33018279 |
| SSID | ssj0014489 |
| Score | 2.466253 |
| Snippet | This article introduces a novel latent 3D diffusion model for generating neural voxel fields with precise part-aware structures and high-quality textures. In... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 8057 |
| SubjectTerms | 3D diffusion models Codes Decoding Diffusion models Diffusion processes Image color analysis Noise reduction part-aware generation Rendering (computer graphics) Shape shape generation Three-dimensional displays Training |
| Title | Part-Aware Shape Generation With Latent 3D Diffusion of Neural Voxel Fields |
| URI | https://ieeexplore.ieee.org/document/10973321 https://www.ncbi.nlm.nih.gov/pubmed/40261778 https://www.proquest.com/docview/3193711052 |
| Volume | 31 |
| WOSCitedRecordID | wos001567023900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-slGIf7JdtT6uk0KdCdC8fm-RRtKdQEaH2em9LNpngQdmVu722f75Jdk_uxYe-5WEzG-Y3ZGYyXwBfAnpppbIUUUsqxuioDj5QUwhvpNfe5fkp0yt1fa1nM3MzFKvnWhhEzMlneJyWOZbvW7dKT2UnKVrKeSobf6aU6ou1HkMG0c8wfYKhoiya6UMIM-45uZ2eXURXkMljHtV9dBF24IXIvcjTdLUNfZQHrDxta2adM3n1n6d9DbuDcUlOe2l4A1vYvIWXGy0H38H3mygr9PSvXSD5cWfvkfSNpxM-5Ne8uyNX0fpsOsLPyfk8hFV6TSNtIKmLR6Q9bf_hbzJJeW_LPfg5-XZ7dkmHgQrUMVV2NNSaeyMCT8M10I-ZFdZFk9AVupbalSUW1hbOWCksKz0q7oQIzBmt1Dj6Ffw9bDdtgx-BMF56zWuhXO2F47VxoUBUQZWeBWnKEXxds7W67_tmVNnfKEyV4KgSHNUAxwj2Evs2Puw5N4LPaySqKPUplGEbbFfLKl4cXEViko3gQw_R4-41svtPUD2AnfTzPiPvE2x3ixUewnP3p5svF0dRtGb6KIvWAxqyx6o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hgqA9lFdLQ3kYiROS240f6_WxahuKGqJKhNDbymuP1Uhot0o2wM_H9m6qXHrozQd7ZM038sx4XgCfPTpppDIUsZBUDNHSwjtPdSaclq5wNs1PmY3VZFJcX-urvlg91cIgYko-w6O4TLF819hV_Co7jtFSzmPZ-GMpBBt25Vp3QYPgaeguxVBRFgz1PogZTh1PZ6dfgzPI5BEPCj84CdvwVKRu5HG-2oZGSiNW7rc2k9YZPX_gfV_Abm9ekpNOHl7CI6xfwc5G08HXcHkVpIWe_DULJD9uzC2SrvV0RIj8mrc3ZBzsz7ol_Iyczb1fxf800ngS-3gE2rPmH_4mo5j5ttyDn6Pz6ekF7UcqUMtU3lJfFdxp4Xkcr4FuyIwwNhiFNisqWdg8x8yYzGojhWG5Q8WtEJ5ZXSg1DJ4F34etuqnxAAjjuSt4JZStnLC80tZniMqr3DEvdT6AL2u2lrdd54wyeRyZLiMcZYSj7OEYwF5k38bGjnMD-LRGogxyH4MZpsZmtSzD08FVICbZAN50EN2dXiP79h6qH-HZxfT7uBx_m1wewna8SJef9w622sUK38MT-6edLxcfkoD9B_cVygk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Part-Aware+Shape+Generation+With+Latent+3D+Diffusion+of+Neural+Voxel+Fields&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Huang%2C+Yuhang&rft.au=Zou%2C+Shilong&rft.au=Liu%2C+Xinwang&rft.au=Xu%2C+Kai&rft.date=2025-10-01&rft.eissn=1941-0506&rft.volume=31&rft.issue=10&rft.spage=8057&rft_id=info:doi/10.1109%2FTVCG.2025.3562871&rft_id=info%3Apmid%2F40261778&rft.externalDocID=40261778 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |