Multistep Intent Estimation Guided Adaptive Passive Control for Safety-Aware Physical Human-Robot Collaboration
pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to r...
Saved in:
| Published in: | IEEE transactions on cybernetics Vol. PP; pp. 1 - 13 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
10.10.2025
|
| Subjects: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC. |
|---|---|
| AbstractList | pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC.pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC. pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC. |
| Author | Liu, Haotian Zhang, Zhengtao Tong, Yuchuang Ju, Zhaojie |
| Author_xml | – sequence: 1 givenname: Haotian orcidid: 0009-0001-9264-7674 surname: Liu fullname: Liu, Haotian email: liuhaotian2021@ia.ac.cn organization: Institute of Automation, CAS Engineering Laboratory for Intelligent Industrial Vision, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Zhengtao orcidid: 0000-0003-1659-7879 surname: Zhang fullname: Zhang, Zhengtao email: zhengtao.zhang@ia.ac.cn organization: Institute of Automation, CAS Engineering Laboratory for Intelligent Industrial Vision, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Yuchuang orcidid: 0000-0001-8767-1584 surname: Tong fullname: Tong, Yuchuang email: yuchuang.tong@ia.ac.cn organization: Institute of Automation, CAS Engineering Laboratory for Intelligent Industrial Vision, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Zhaojie orcidid: 0000-0002-9524-7609 surname: Ju fullname: Ju, Zhaojie email: juzhaojie@icloud.com organization: Key Laboratory for Biomedical Engineering of Ministry of Education and the College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41071693$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFkU1PwzAMhiMEYjD2A5AQ6pFLRz7WNDmOCdikIRCMA6cqbRxR1DUjSUH792RsDF9sWY8tv35P0WFrW0DonOAhIVheLyZvN0OKaTZknHAm6QE6oYSLlNI8O9zXPO-hgfcfOIaILSmOUW9EcE64ZCfIPnRNqH2AVTJrA7QhufWhXqpQ2za572oNOhlrtQr1FyRPyvtNntg2ONskxrrkRRkI63T8rVwE3te-rlSTTLulatNnW9oQ6aZRpXW_O8_QkVGNh8Eu99Hr3e1iMk3nj_ezyXieVjTnIdUUV1muS8I5E0JXAEaKKAzISGHOuFEajK5GjGkmjCSZ0EZCpkqSZSDLivXR1XbvytnPDnwolrWvIF7Sgu18wSjHmIsRyyN6uUO7cgm6WLmo362LvydFgGyBylnvHZg9QnCx8aLYeFFsvCh2XsSZi-1MDQD_PCFSMsnZD0ishiU |
| CODEN | ITCEB8 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TCYB.2025.3616392 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 13 |
| ExternalDocumentID | 41071693 10_1109_TCYB_2025_3616392 11199396 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Beijing Municipal Natural Science Foundation, Chin grantid: 4252053 – fundername: National Natural Science Foundation of China grantid: 62303457; U21A20482 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD NPM 7X8 |
| ID | FETCH-LOGICAL-c276t-d20c57db166388dceef98227e14a0636fadefdc433d38f9158df9e5ab155e9bc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591751000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Oct 11 16:30:42 EDT 2025 Sun Oct 12 01:41:16 EDT 2025 Sat Nov 29 07:17:18 EST 2025 Sat Oct 25 03:10:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c276t-d20c57db166388dceef98227e14a0636fadefdc433d38f9158df9e5ab155e9bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0001-9264-7674 0000-0001-8767-1584 0000-0003-1659-7879 0000-0002-9524-7609 |
| PMID | 41071693 |
| PQID | 3260068437 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmed_primary_41071693 proquest_miscellaneous_3260068437 ieee_primary_11199396 crossref_primary_10_1109_TCYB_2025_3616392 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-10 |
| PublicationDateYYYYMMDD | 2025-10-10 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000816898 |
| Score | 2.401625 |
| Snippet | pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Behavioral sciences Collaboration Estimation Force Impedance Model predictive control multistep human intent estimation passivity constraint pHRC reinforcement learning (RL) Robot sensing systems Robots Stability analysis Transformers |
| Title | Multistep Intent Estimation Guided Adaptive Passive Control for Safety-Aware Physical Human-Robot Collaboration |
| URI | https://ieeexplore.ieee.org/document/11199396 https://www.ncbi.nlm.nih.gov/pubmed/41071693 https://www.proquest.com/docview/3260068437 |
| Volume | PP |
| WOSCitedRecordID | wos001591751000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1EMvLc-yha6MxKFFCiRx4sdxu2LhhBBQaXuK7HgicdmsdrNF_PuOHS-UAwdO8cF5yN9M5huPZwbgpFHCSjIDicuRHBRpBemcyYjIpcaXfCpRmNBsQl5fq-lU38Rk9ZALg4jh8Bme-WGI5bu2XvmtsnPSSzKnWmzAhpSiT9Z63lAJHSRC79ucBgnRChmjmFmqz-_Hf36RN5iXZ1wQBdG-i01Bro-vRfLKJIUeK2_TzWB2Jl_e-cFb8DnySzbqBWIbPuBsB7ajBi_Zj1hm-ucutCH3lkCes3COvWMXpO59JiO7XD04dGzkzNz_D9kNcWx_Hfcn2xlRXXZnGuyektGjWdCEiDcLUYHktrVtx8b_C9ke_J5c3I-vkth-IalzKTpCL61L6WxGpEQpR9a08cX-JGaFIWIjGuOwcXXBueOq0VmpXKOxNJYoCmpb833YnLUzPACWWa5LbdEoYmy1KK3KuDImd0YVmJf1AE7XCFTzvspGFbyTVFceucojV0XkBrDnV_plYlzkARyvQatIR3zgw8ywXS0r7qvwC1VwOYCvPZrPd6-F4NsbTz2ET_7l3lxl6RFsdosVfoeP9V9CaDEkQZyqYRDEf0Bk2Ic |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21tFJ7KdAC3RaoK_XQVgokcezYx2XFRwWsULuV6Cmy44nEZbNaskX8e8aOl9IDB07xwYksv5nMG49nBuBLo6QtyQwkLkdyUEorSedMRkQuNb7kk0BpQrOJcjxWl5f6Iiarh1wYRAyXz3DPD0Ms37X1wh-V7ZNekjnV8jm8EEWRp3261v2RSughEbrf5jRIiFiUMY6ZpXp_MvpzQP5gLva4JBKifR-bgpwfX43kP6MUuqw8TjiD4TlafeKS1-BNZJhs2IvEOjzD6VtYjzp8zb7GQtPf3kEbsm8J5hkLN9k7dkgK3-cysuPFlUPHhs7M_B-RXRDL9s9Rf7edEdllv0yD3W0yvDFzmhARZyEukPxsbdux0UMx24DfR4eT0UkSGzAkdV7KjvBLa1E6mxEtUcqRPW18ub8Ss8IQtZGNcdi4uuDccdXoTCjXaBTGEklBbWu-CSvTdorvgWWWa6EtGkWcrZbCqowrY3JnVIG5qAfwfYlANevrbFTBP0l15ZGrPHJVRG4AG36n_02MmzyAz0vQKtISH_owU2wX1xX3dfilKng5gK0ezfu3l0Lw4ZGvfoJXJ5Pzs-rsx_j0I7z2C_HGK0u3YaWbL3AHXtZ_Ca35bhDHO5Aa2uY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistep+Intent+Estimation+Guided+Adaptive+Passive+Control+for+Safety-Aware+Physical+Human-Robot+Collaboration&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Haotian&rft.au=Zhang%2C+Zhengtao&rft.au=Tong%2C+Yuchuang&rft.au=Ju%2C+Zhaojie&rft.date=2025-10-10&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2025.3616392&rft_id=info%3Apmid%2F41071693&rft.externalDocID=41071693 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |