Multistep Intent Estimation Guided Adaptive Passive Control for Safety-Aware Physical Human-Robot Collaboration

pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. PP; pp. 1 - 13
Main Authors: Liu, Haotian, Zhang, Zhengtao, Tong, Yuchuang, Ju, Zhaojie
Format: Journal Article
Language:English
Published: United States IEEE 10.10.2025
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC.
AbstractList pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC.pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC.
pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner. To address these challenges, we propose a novel two-loop adaptive passive control framework guided by multistep human intent estimation to reduce human-robot disagreement and improve robot assistance level, facilitating safety-aware efficient physical human-robot collaboration (pHRC). In the framework, outer loop's intent estimation guides the inner loop's adaptive passive controller, ensuring real-time robot behavior adjustment based on multistep intention. Specifically, the outer loop incorporates a transformer-based human intent estimator (THIE) that integrates the Transformer with a conditional variational autoencoder (CVAE) for multistep predictions, accurately estimating motion and force to guide the robot. The inner loop incorporates a goal-oriented reinforcement learning (GoRL)-based adaptive impedance control, which constructs multistep rewards based on prediction and probability from THIE to adjust impedance parameters, thereby balancing disagreement and assistance, and promoting locally optimal robot behaviors. Furthermore, an energy tank-based passive model predictive control (ET-PMPC) is employed to limit robot stored energy, avoiding the impact of variable impedance on safety. Experiments validate that our framework outperforms state-of-the-art (SOTA) methods, significantly improving intent estimation accuracy, robot assistance level, and safety, highlighting its potential to advance pHRC.
Author Liu, Haotian
Zhang, Zhengtao
Tong, Yuchuang
Ju, Zhaojie
Author_xml – sequence: 1
  givenname: Haotian
  orcidid: 0009-0001-9264-7674
  surname: Liu
  fullname: Liu, Haotian
  email: liuhaotian2021@ia.ac.cn
  organization: Institute of Automation, CAS Engineering Laboratory for Intelligent Industrial Vision, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Zhengtao
  orcidid: 0000-0003-1659-7879
  surname: Zhang
  fullname: Zhang, Zhengtao
  email: zhengtao.zhang@ia.ac.cn
  organization: Institute of Automation, CAS Engineering Laboratory for Intelligent Industrial Vision, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Yuchuang
  orcidid: 0000-0001-8767-1584
  surname: Tong
  fullname: Tong, Yuchuang
  email: yuchuang.tong@ia.ac.cn
  organization: Institute of Automation, CAS Engineering Laboratory for Intelligent Industrial Vision, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Zhaojie
  orcidid: 0000-0002-9524-7609
  surname: Ju
  fullname: Ju, Zhaojie
  email: juzhaojie@icloud.com
  organization: Key Laboratory for Biomedical Engineering of Ministry of Education and the College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41071693$$D View this record in MEDLINE/PubMed
BookMark eNpFkU1PwzAMhiMEYjD2A5AQ6pFLRz7WNDmOCdikIRCMA6cqbRxR1DUjSUH792RsDF9sWY8tv35P0WFrW0DonOAhIVheLyZvN0OKaTZknHAm6QE6oYSLlNI8O9zXPO-hgfcfOIaILSmOUW9EcE64ZCfIPnRNqH2AVTJrA7QhufWhXqpQ2za572oNOhlrtQr1FyRPyvtNntg2ONskxrrkRRkI63T8rVwE3te-rlSTTLulatNnW9oQ6aZRpXW_O8_QkVGNh8Eu99Hr3e1iMk3nj_ezyXieVjTnIdUUV1muS8I5E0JXAEaKKAzISGHOuFEajK5GjGkmjCSZ0EZCpkqSZSDLivXR1XbvytnPDnwolrWvIF7Sgu18wSjHmIsRyyN6uUO7cgm6WLmo362LvydFgGyBylnvHZg9QnCx8aLYeFFsvCh2XsSZi-1MDQD_PCFSMsnZD0ishiU
CODEN ITCEB8
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2025.3616392
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 13
ExternalDocumentID 41071693
10_1109_TCYB_2025_3616392
11199396
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation, Chin
  grantid: 4252053
– fundername: National Natural Science Foundation of China
  grantid: 62303457; U21A20482
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
7X8
ID FETCH-LOGICAL-c276t-d20c57db166388dceef98227e14a0636fadefdc433d38f9158df9e5ab155e9bc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591751000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sat Oct 11 16:30:42 EDT 2025
Sun Oct 12 01:41:16 EDT 2025
Sat Nov 29 07:17:18 EST 2025
Sat Oct 25 03:10:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-d20c57db166388dceef98227e14a0636fadefdc433d38f9158df9e5ab155e9bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-9264-7674
0000-0001-8767-1584
0000-0003-1659-7879
0000-0002-9524-7609
PMID 41071693
PQID 3260068437
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_41071693
proquest_miscellaneous_3260068437
ieee_primary_11199396
crossref_primary_10_1109_TCYB_2025_3616392
PublicationCentury 2000
PublicationDate 2025-10-10
PublicationDateYYYYMMDD 2025-10-10
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000816898
Score 2.401625
Snippet pHRC requires strict safety and efficiency guarantees, imposing heightened demands on accurate human intent estimation and adaptive control in a stable manner....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Behavioral sciences
Collaboration
Estimation
Force
Impedance
Model predictive control
multistep human intent estimation
passivity constraint
pHRC
reinforcement learning (RL)
Robot sensing systems
Robots
Stability analysis
Transformers
Title Multistep Intent Estimation Guided Adaptive Passive Control for Safety-Aware Physical Human-Robot Collaboration
URI https://ieeexplore.ieee.org/document/11199396
https://www.ncbi.nlm.nih.gov/pubmed/41071693
https://www.proquest.com/docview/3260068437
Volume PP
WOSCitedRecordID wos001591751000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1EMvLc-yha6MxKFFCiRx4sdxu2LhhBBQaXuK7HgicdmsdrNF_PuOHS-UAwdO8cF5yN9M5huPZwbgpFHCSjIDicuRHBRpBemcyYjIpcaXfCpRmNBsQl5fq-lU38Rk9ZALg4jh8Bme-WGI5bu2XvmtsnPSSzKnWmzAhpSiT9Z63lAJHSRC79ucBgnRChmjmFmqz-_Hf36RN5iXZ1wQBdG-i01Bro-vRfLKJIUeK2_TzWB2Jl_e-cFb8DnySzbqBWIbPuBsB7ajBi_Zj1hm-ucutCH3lkCes3COvWMXpO59JiO7XD04dGzkzNz_D9kNcWx_Hfcn2xlRXXZnGuyektGjWdCEiDcLUYHktrVtx8b_C9ke_J5c3I-vkth-IalzKTpCL61L6WxGpEQpR9a08cX-JGaFIWIjGuOwcXXBueOq0VmpXKOxNJYoCmpb833YnLUzPACWWa5LbdEoYmy1KK3KuDImd0YVmJf1AE7XCFTzvspGFbyTVFceucojV0XkBrDnV_plYlzkARyvQatIR3zgw8ywXS0r7qvwC1VwOYCvPZrPd6-F4NsbTz2ET_7l3lxl6RFsdosVfoeP9V9CaDEkQZyqYRDEf0Bk2Ic
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21tFJ7KdAC3RaoK_XQVgokcezYx2XFRwWsULuV6Cmy44nEZbNaskX8e8aOl9IDB07xwYksv5nMG49nBuBLo6QtyQwkLkdyUEorSedMRkQuNb7kk0BpQrOJcjxWl5f6Iiarh1wYRAyXz3DPD0Ms37X1wh-V7ZNekjnV8jm8EEWRp3261v2RSughEbrf5jRIiFiUMY6ZpXp_MvpzQP5gLva4JBKifR-bgpwfX43kP6MUuqw8TjiD4TlafeKS1-BNZJhs2IvEOjzD6VtYjzp8zb7GQtPf3kEbsm8J5hkLN9k7dkgK3-cysuPFlUPHhs7M_B-RXRDL9s9Rf7edEdllv0yD3W0yvDFzmhARZyEukPxsbdux0UMx24DfR4eT0UkSGzAkdV7KjvBLa1E6mxEtUcqRPW18ub8Ss8IQtZGNcdi4uuDccdXoTCjXaBTGEklBbWu-CSvTdorvgWWWa6EtGkWcrZbCqowrY3JnVIG5qAfwfYlANevrbFTBP0l15ZGrPHJVRG4AG36n_02MmzyAz0vQKtISH_owU2wX1xX3dfilKng5gK0ezfu3l0Lw4ZGvfoJXJ5Pzs-rsx_j0I7z2C_HGK0u3YaWbL3AHXtZ_Ca35bhDHO5Aa2uY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistep+Intent+Estimation+Guided+Adaptive+Passive+Control+for+Safety-Aware+Physical+Human-Robot+Collaboration&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Haotian&rft.au=Zhang%2C+Zhengtao&rft.au=Tong%2C+Yuchuang&rft.au=Ju%2C+Zhaojie&rft.date=2025-10-10&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2025.3616392&rft_id=info%3Apmid%2F41071693&rft.externalDocID=41071693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon