A fully adaptive framework for continuous-state stochastic dynamic programming

Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP). Recent ADP methodologies often employ the design and analysis of computer experiment (DACE) techniques for the FVF approximation. Use of DACE-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 183; S. 107160
Hauptverfasser: Fan, Huiyuan, Tarun, Prashant K., Viswanatha, Amith, Chen, Victoria C.P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2025
Schlagworte:
ISSN:0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP). Recent ADP methodologies often employ the design and analysis of computer experiment (DACE) techniques for the FVF approximation. Use of DACE-based ADP approach, however, creates a “chicken and egg” situation where we cannot collect the data for statistical modeling until we know the state space region, but we do not know the state space region until we collect the data. To overcome this dilemma, this paper introduces a sequential state space exploration (SSSE) approach to adaptively identify the state space region for the experimental design while also sampling useful data for the statistical model. In the proposed methodology, the SSSE approach works in tandem with an adaptive value function approximation (AVFA) algorithm that gradually grows the complexity of the statistical model as more data are observed. This novel SSSE-AVFA approach features a “fully adaptive dynamic programming” algorithm, which can automatically and appropriately identify the three critical components (state space region, sample size of the data, and statistical model structure) for FVF approximation, thereby eliminating the need for time-consuming trial-and-error computational runs that were previously required. The SSSE-AVFA approach is examined with a nine-dimensional inventory forecasting problem and is compared with fixed structure runs in which the state space region, sample size of the data, and statistical model structure are assumed in advance. Our proposed methodology ensured either that the established solutions could be more reasonable or that the modeling process could effectively save the computational effort. With its full adaptiveness in determining those critical components, the SSSE-AVFA approach has the potential to be more effective and efficient than the traditional methods in handling a wide range of real-world continuous-state DP problems. •Proposes a novel adaptive dynamic programming methodology to solve a high-dimensional, continuous-state, multistage, stochastic dynamic programming (SDP) problem.•Presents a methodology with a unique ability to automatically and adaptively identify the state space, sample size, and statistical model structure for future value function approximation for an SDP problem.•Demonstrates the efficiency and efficacy of the proposed methodology using a nine- dimensional inventory forecasting problem.
AbstractList Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP). Recent ADP methodologies often employ the design and analysis of computer experiment (DACE) techniques for the FVF approximation. Use of DACE-based ADP approach, however, creates a “chicken and egg” situation where we cannot collect the data for statistical modeling until we know the state space region, but we do not know the state space region until we collect the data. To overcome this dilemma, this paper introduces a sequential state space exploration (SSSE) approach to adaptively identify the state space region for the experimental design while also sampling useful data for the statistical model. In the proposed methodology, the SSSE approach works in tandem with an adaptive value function approximation (AVFA) algorithm that gradually grows the complexity of the statistical model as more data are observed. This novel SSSE-AVFA approach features a “fully adaptive dynamic programming” algorithm, which can automatically and appropriately identify the three critical components (state space region, sample size of the data, and statistical model structure) for FVF approximation, thereby eliminating the need for time-consuming trial-and-error computational runs that were previously required. The SSSE-AVFA approach is examined with a nine-dimensional inventory forecasting problem and is compared with fixed structure runs in which the state space region, sample size of the data, and statistical model structure are assumed in advance. Our proposed methodology ensured either that the established solutions could be more reasonable or that the modeling process could effectively save the computational effort. With its full adaptiveness in determining those critical components, the SSSE-AVFA approach has the potential to be more effective and efficient than the traditional methods in handling a wide range of real-world continuous-state DP problems. •Proposes a novel adaptive dynamic programming methodology to solve a high-dimensional, continuous-state, multistage, stochastic dynamic programming (SDP) problem.•Presents a methodology with a unique ability to automatically and adaptively identify the state space, sample size, and statistical model structure for future value function approximation for an SDP problem.•Demonstrates the efficiency and efficacy of the proposed methodology using a nine- dimensional inventory forecasting problem.
ArticleNumber 107160
Author Fan, Huiyuan
Viswanatha, Amith
Chen, Victoria C.P.
Tarun, Prashant K.
Author_xml – sequence: 1
  givenname: Huiyuan
  surname: Fan
  fullname: Fan, Huiyuan
  organization: Industrial and Manufacturing Systems Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
– sequence: 2
  givenname: Prashant K.
  surname: Tarun
  fullname: Tarun, Prashant K.
  email: ptarun@missouriwestern.edu
  organization: Steven L. Craig School of Business, Missouri Western State University, St. Joseph, MO 64507, USA
– sequence: 3
  givenname: Amith
  surname: Viswanatha
  fullname: Viswanatha, Amith
  organization: Industrial and Manufacturing Systems Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
– sequence: 4
  givenname: Victoria C.P.
  surname: Chen
  fullname: Chen, Victoria C.P.
  organization: Industrial and Manufacturing Systems Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
BookMark eNp9kM9OAjEQh3vAREAfwFtfYLHt7rYkngjxX0L0ouemTKdYZFvSFgxvbwmencNMJplv8ss3IaMQAxJyx9mMMy7vtzOIaSaY6OuuuGQjMmYt6xvWd_NrMsl5y2opwcfkbUHdYbc7UWPNvvgjUpfMgD8xfVMXE4UYig-HeMhNLqYgzSXCl8nFA7WnYIY69yluKjT4sLkhV87sMt7-zSn5fHr8WL40q_fn1-Vi1YBQsjSW16BcdapD6EXnrDBgBZd2LtvajRB83bbY1RPHHag12N5K2TsFBluAdkr45S-kmHNCp_fJDyadNGf6LEFvdZWgzxL0RUJlHi4M1mBHj0ln8BgArU8IRdvo_6F_AVFKaj4
Cites_doi 10.1002/qre.708
10.1111/1467-9868.00389
10.1016/j.ejor.2020.07.014
10.1109/TNN.2004.824413
10.1016/j.eswa.2017.01.020
10.1080/07408170701759734
10.1287/opre.47.1.38
10.1007/s10479-017-2747-1
10.1007/s10729-013-9252-0
10.1109/ADPRL.2007.368190
10.1002/mcda.1506
10.1287/opre.41.3.484
10.1016/S0167-9473(98)00084-X
10.1080/07408170500232495
10.1287/opre.1080.0576
10.1016/j.cor.2012.11.016
10.1029/WR024i008p01345
10.1016/j.cor.2005.02.043
10.1162/neco.1992.4.1.1
10.1016/j.ejor.2005.01.022
10.1080/07408170600899508
10.1002/mcda.475
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cor.2025.107160
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
ExternalDocumentID 10_1016_j_cor_2025_107160
S0305054825001881
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
AEBSH
AEFWE
AEHXG
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
AOUOD
APLSM
APXCP
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-c276t-d110117474ec524fd2acd216d86316da221b33e4174f1fc7bcd5d665f7cae3cc3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514103600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Sat Nov 29 07:43:48 EST 2025
Sat Aug 30 17:14:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sequential exploration
Approximate dynamic programming
Value function approximation
Continuous state space
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c276t-d110117474ec524fd2acd216d86316da221b33e4174f1fc7bcd5d665f7cae3cc3
ParticipantIDs crossref_primary_10_1016_j_cor_2025_107160
elsevier_sciencedirect_doi_10_1016_j_cor_2025_107160
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & operations research
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Tsui, Barton, Mechesheimer (b9) 2006; 38
Johnson, Stedinger, Shoemaker, Li, Tejada-Guibert (b16) 1993; 41
Pilla, Rosenberger, Chen, Smith (b19) 2008; 40
Chen (b7) 1999; 30
Bellman (b3) 1957
Cervellera, Chen, Wen (b4) 2006; 171
Yang, Chen, Chang, Murphy, Tsai (b29) 2007; 39
Werbos, P.J., 2007. Using ADP to understand and replicate brain intelligence: the next level design. In: Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning. pp. 209–216.
Yang, Chen, Chang, Sattler, Wen (b30) 2009; 52
Fan (b11) 2008
Ariyajunya, Chen, Chen, Kim (b1) 2017; 76
Cervellera, Wen, Chen (b6) 2007; 34
Murphy (b18) 2003; 65(Part 2)
Cervellera, Muselli (b5) 2004; 15
Tarun, Chen, Corley, Jiang (b23) 2011; 18
Geman, Bienenstoch, Doursat (b15) 1992; 4
Tarun, Chen, Corley (b22) 2014; 21
Foufoula-Georgiou, Kitanidis (b14) 1988; 24
Ariyajunya, Chen, Chen, Kim, Rosenberger (b2) 2021; 289
Chen, Ruppert, Shoemaker (b8) 1999; 47
Sacks, Welch, Mitchell, Wynn (b20) 1989; 4
.
Sutton, Barto (b21) 2018
Lin, LeBoulluec, Zeng, Chen, Gatchel (b17) 2014; 17
Werbos (b27) 2004
Dulac-Arnold, C., Mankowitz, D., Hester, T., 2019. Challenges of Real-World Reinforcement Learning. Technical Report
Fan, Tarun, Chen (b12) 2013; 40
Tsai, Chen, Chen, Beck (b25) 2004; 132
Tsai, Chen (b24) 2005; 21
Wen (b26) 2005
Fan, Tarun, Chen, Shih, Rosenberger, Kim, Horton (b13) 2018; 263
10.1016/j.cor.2025.107160_b28
Cervellera (10.1016/j.cor.2025.107160_b6) 2007; 34
Ariyajunya (10.1016/j.cor.2025.107160_b2) 2021; 289
Sutton (10.1016/j.cor.2025.107160_b21) 2018
Cervellera (10.1016/j.cor.2025.107160_b4) 2006; 171
Johnson (10.1016/j.cor.2025.107160_b16) 1993; 41
Tsai (10.1016/j.cor.2025.107160_b25) 2004; 132
Cervellera (10.1016/j.cor.2025.107160_b5) 2004; 15
Yang (10.1016/j.cor.2025.107160_b30) 2009; 52
Fan (10.1016/j.cor.2025.107160_b11) 2008
Tsai (10.1016/j.cor.2025.107160_b24) 2005; 21
Yang (10.1016/j.cor.2025.107160_b29) 2007; 39
10.1016/j.cor.2025.107160_b10
Chen (10.1016/j.cor.2025.107160_b9) 2006; 38
Sacks (10.1016/j.cor.2025.107160_b20) 1989; 4
Geman (10.1016/j.cor.2025.107160_b15) 1992; 4
Murphy (10.1016/j.cor.2025.107160_b18) 2003; 65(Part 2)
Chen (10.1016/j.cor.2025.107160_b8) 1999; 47
Fan (10.1016/j.cor.2025.107160_b13) 2018; 263
Foufoula-Georgiou (10.1016/j.cor.2025.107160_b14) 1988; 24
Ariyajunya (10.1016/j.cor.2025.107160_b1) 2017; 76
Chen (10.1016/j.cor.2025.107160_b7) 1999; 30
Tarun (10.1016/j.cor.2025.107160_b23) 2011; 18
Werbos (10.1016/j.cor.2025.107160_b27) 2004
Pilla (10.1016/j.cor.2025.107160_b19) 2008; 40
Tarun (10.1016/j.cor.2025.107160_b22) 2014; 21
Lin (10.1016/j.cor.2025.107160_b17) 2014; 17
Fan (10.1016/j.cor.2025.107160_b12) 2013; 40
Bellman (10.1016/j.cor.2025.107160_b3) 1957
Wen (10.1016/j.cor.2025.107160_b26) 2005
References_xml – year: 2008
  ident: b11
  article-title: Sequential Frameworks for Statistics-Based Value Function Representation in Approximate Dynamic Programming
– volume: 17
  start-page: 270
  year: 2014
  end-page: 283
  ident: b17
  article-title: An adaptive pain management framework
  publication-title: Heal. Care Manag. Sci.
– volume: 34
  start-page: 70
  year: 2007
  end-page: 90
  ident: b6
  article-title: Neural network and regression spline value function approximations for stochastic dynamic programming
  publication-title: Comput. Oper. Res.
– year: 2018
  ident: b21
  article-title: Reinforcement Learning: An Introduction
– reference: Werbos, P.J., 2007. Using ADP to understand and replicate brain intelligence: the next level design. In: Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning. pp. 209–216.
– volume: 40
  start-page: 524
  year: 2008
  end-page: 537
  ident: b19
  article-title: A statistical computer experiments approach to airline fleet assignment
  publication-title: IIE Trans.
– volume: 40
  start-page: 1076
  year: 2013
  end-page: 1084
  ident: b12
  article-title: Adaptive value function approximation for continuous-state stochastic dynamic programming
  publication-title: Comput. Oper. Res.
– volume: 263
  start-page: 361
  year: 2018
  end-page: 384
  ident: b13
  article-title: Data-driven optimization for dallas fort worth international airport deicing activities
  publication-title: Ann. Oper. Res.
– volume: 15
  start-page: 533
  year: 2004
  end-page: 544
  ident: b5
  article-title: Deterministic design for neural network learning: An approach based on discrepancy
  publication-title: IEEE Trans. Neural Netw.
– volume: 47
  start-page: 38
  year: 1999
  end-page: 53
  ident: b8
  article-title: Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming
  publication-title: Oper. Res.
– volume: 30
  start-page: 317
  year: 1999
  end-page: 341
  ident: b7
  article-title: Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs
  publication-title: Comput. Statist. Data Anal.
– volume: 24
  start-page: 1345
  year: 1988
  end-page: 1359
  ident: b14
  article-title: Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 115
  year: 2011
  end-page: 142
  ident: b23
  article-title: Optimizing selection of technologies in a multiple stage, multiple objective wastewater treatment system
  publication-title: J. Multi-Criteria Decis. Anal.
– volume: 21
  start-page: 689
  year: 2005
  end-page: 699
  ident: b24
  article-title: Flexible and robust implementations of multivariate adaptive regression splines within a wastewater treatment stochastic dynamic program
  publication-title: Qual. Reliab. Eng. Int.
– year: 2005
  ident: b26
  article-title: Statistics-Based Approach to Stochastic Optimal Control Problems
– volume: 41
  start-page: 484
  year: 1993
  end-page: 500
  ident: b16
  article-title: Numerical solution of continuous-state dynamic programs using linear and spline interpolation
  publication-title: Oper. Res.
– volume: 4
  start-page: 1
  year: 1992
  end-page: 58
  ident: b15
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
– volume: 39
  start-page: 607
  year: 2007
  end-page: 615
  ident: b29
  article-title: Mining and modeling for a metropolitan atlanta ozone pollution decision-making framework
  publication-title: IIE Trans.
– volume: 65(Part 2)
  start-page: 331
  year: 2003
  end-page: 366
  ident: b18
  article-title: Optimal dynamic treatment regimes
  publication-title: J. R. Stat. Soc. Ser. B
– start-page: 3
  year: 2004
  end-page: 44
  ident: b27
  article-title: ADP: Goals, opportunities and principles
  publication-title: Handbook of Learning and Approximate Dynamic Programming
– volume: 38
  start-page: 273
  year: 2006
  end-page: 291
  ident: b9
  article-title: A review of design, modeling and applications of computer experiments
  publication-title: IIE Trans.
– reference: .
– year: 1957
  ident: b3
  article-title: Dynamic Programming
– volume: 4
  start-page: 409
  year: 1989
  end-page: 423
  ident: b20
  article-title: Design and analysis of computer experiments
  publication-title: Statist. Sci.
– volume: 171
  start-page: 1139
  year: 2006
  end-page: 1151
  ident: b4
  article-title: Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization
  publication-title: European J. Oper. Res.
– volume: 132
  start-page: 207
  year: 2004
  end-page: 221
  ident: b25
  article-title: Stochastic dynamic programming formulation for a wastewater treatment decision-making framework
  publication-title: Ann. Oper. Res. Spec. Issue Appl. Optim. under Uncertain.
– volume: 21
  start-page: 197
  year: 2014
  end-page: 208
  ident: b22
  article-title: Divergence of pairwise comparison matrices computed using the successive geometric mean (SGM) method in a multiple stage, multiple objective model
  publication-title: J. Multi-Criteria Decis. Anal.
– volume: 289
  start-page: 683
  year: 2021
  end-page: 695
  ident: b2
  article-title: Addressing state space multicollinearity for an ozone pollution dynamic control problem
  publication-title: European J. Oper. Res.
– reference: Dulac-Arnold, C., Mankowitz, D., Hester, T., 2019. Challenges of Real-World Reinforcement Learning. Technical Report,
– volume: 52
  start-page: 484
  year: 2009
  end-page: 498
  ident: b30
  article-title: A decision-making framework for ozone pollution control
  publication-title: Oper. Res.
– volume: 76
  start-page: 49
  year: 2017
  end-page: 58
  ident: b1
  article-title: Data mining for state space orthogonalization in adaptive dynamic programming
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 689
  year: 2005
  ident: 10.1016/j.cor.2025.107160_b24
  article-title: Flexible and robust implementations of multivariate adaptive regression splines within a wastewater treatment stochastic dynamic program
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.708
– year: 2018
  ident: 10.1016/j.cor.2025.107160_b21
– volume: 65(Part 2)
  start-page: 331
  year: 2003
  ident: 10.1016/j.cor.2025.107160_b18
  article-title: Optimal dynamic treatment regimes
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/1467-9868.00389
– year: 2008
  ident: 10.1016/j.cor.2025.107160_b11
– volume: 289
  start-page: 683
  year: 2021
  ident: 10.1016/j.cor.2025.107160_b2
  article-title: Addressing state space multicollinearity for an ozone pollution dynamic control problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2020.07.014
– volume: 15
  start-page: 533
  year: 2004
  ident: 10.1016/j.cor.2025.107160_b5
  article-title: Deterministic design for neural network learning: An approach based on discrepancy
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.824413
– volume: 132
  start-page: 207
  year: 2004
  ident: 10.1016/j.cor.2025.107160_b25
  article-title: Stochastic dynamic programming formulation for a wastewater treatment decision-making framework
  publication-title: Ann. Oper. Res. Spec. Issue Appl. Optim. under Uncertain.
– volume: 76
  start-page: 49
  year: 2017
  ident: 10.1016/j.cor.2025.107160_b1
  article-title: Data mining for state space orthogonalization in adaptive dynamic programming
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.020
– volume: 4
  start-page: 409
  year: 1989
  ident: 10.1016/j.cor.2025.107160_b20
  article-title: Design and analysis of computer experiments
  publication-title: Statist. Sci.
– volume: 40
  start-page: 524
  issue: 5
  year: 2008
  ident: 10.1016/j.cor.2025.107160_b19
  article-title: A statistical computer experiments approach to airline fleet assignment
  publication-title: IIE Trans.
  doi: 10.1080/07408170701759734
– volume: 47
  start-page: 38
  year: 1999
  ident: 10.1016/j.cor.2025.107160_b8
  article-title: Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming
  publication-title: Oper. Res.
  doi: 10.1287/opre.47.1.38
– volume: 263
  start-page: 361
  year: 2018
  ident: 10.1016/j.cor.2025.107160_b13
  article-title: Data-driven optimization for dallas fort worth international airport deicing activities
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-017-2747-1
– volume: 17
  start-page: 270
  issue: 3
  year: 2014
  ident: 10.1016/j.cor.2025.107160_b17
  article-title: An adaptive pain management framework
  publication-title: Heal. Care Manag. Sci.
  doi: 10.1007/s10729-013-9252-0
– ident: 10.1016/j.cor.2025.107160_b28
  doi: 10.1109/ADPRL.2007.368190
– volume: 21
  start-page: 197
  year: 2014
  ident: 10.1016/j.cor.2025.107160_b22
  article-title: Divergence of pairwise comparison matrices computed using the successive geometric mean (SGM) method in a multiple stage, multiple objective model
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.1506
– volume: 41
  start-page: 484
  year: 1993
  ident: 10.1016/j.cor.2025.107160_b16
  article-title: Numerical solution of continuous-state dynamic programs using linear and spline interpolation
  publication-title: Oper. Res.
  doi: 10.1287/opre.41.3.484
– start-page: 3
  year: 2004
  ident: 10.1016/j.cor.2025.107160_b27
  article-title: ADP: Goals, opportunities and principles
– volume: 30
  start-page: 317
  year: 1999
  ident: 10.1016/j.cor.2025.107160_b7
  article-title: Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(98)00084-X
– volume: 38
  start-page: 273
  year: 2006
  ident: 10.1016/j.cor.2025.107160_b9
  article-title: A review of design, modeling and applications of computer experiments
  publication-title: IIE Trans.
  doi: 10.1080/07408170500232495
– year: 1957
  ident: 10.1016/j.cor.2025.107160_b3
– ident: 10.1016/j.cor.2025.107160_b10
– volume: 52
  start-page: 484
  year: 2009
  ident: 10.1016/j.cor.2025.107160_b30
  article-title: A decision-making framework for ozone pollution control
  publication-title: Oper. Res.
  doi: 10.1287/opre.1080.0576
– volume: 40
  start-page: 1076
  issue: 4
  year: 2013
  ident: 10.1016/j.cor.2025.107160_b12
  article-title: Adaptive value function approximation for continuous-state stochastic dynamic programming
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.11.016
– volume: 24
  start-page: 1345
  year: 1988
  ident: 10.1016/j.cor.2025.107160_b14
  article-title: Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems
  publication-title: Water Resour. Res.
  doi: 10.1029/WR024i008p01345
– volume: 34
  start-page: 70
  year: 2007
  ident: 10.1016/j.cor.2025.107160_b6
  article-title: Neural network and regression spline value function approximations for stochastic dynamic programming
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.02.043
– volume: 4
  start-page: 1
  year: 1992
  ident: 10.1016/j.cor.2025.107160_b15
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.1.1
– year: 2005
  ident: 10.1016/j.cor.2025.107160_b26
– volume: 171
  start-page: 1139
  year: 2006
  ident: 10.1016/j.cor.2025.107160_b4
  article-title: Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2005.01.022
– volume: 39
  start-page: 607
  year: 2007
  ident: 10.1016/j.cor.2025.107160_b29
  article-title: Mining and modeling for a metropolitan atlanta ozone pollution decision-making framework
  publication-title: IIE Trans.
  doi: 10.1080/07408170600899508
– volume: 18
  start-page: 115
  year: 2011
  ident: 10.1016/j.cor.2025.107160_b23
  article-title: Optimizing selection of technologies in a multiple stage, multiple objective wastewater treatment system
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.475
SSID ssj0000721
Score 2.470834
Snippet Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP)....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107160
SubjectTerms Approximate dynamic programming
Continuous state space
Sequential exploration
Value function approximation
Title A fully adaptive framework for continuous-state stochastic dynamic programming
URI https://dx.doi.org/10.1016/j.cor.2025.107160
Volume 183
WOSCitedRecordID wos001514103600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000721
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhhAc-Cggxpd84ESUCttJ3ByradP4UNVDmXqLHNvRMkFWpc3YTvzrvPgjCYVJ7MDFqlzXifL79fn55feeEXqXpFOpCSchY7wIIwl2MI0-yFBRcDcEiYukMNX1v_D5fLpapYvR6KfPhbn8xqtqenWVrv8r1NAHYLeps7eAu5sUOuAzgA4twA7tPwE_C9qQ-nUglFjbot5ef2Ukha02vawa2PCHJpkoAO9Pnom2XHOg7PH0XrT13S9rvpKBOwFiY_hysda109G5ikFdZPnYRlVPmvK66dm3FHVj-he12JwBosHnif_utNz8ECaOb4xVG-7phQfWMp6W7fuFUgSHk8VkGKygscva620aa7WCsS2u2RtgNjChsB8l9oiBP6y7DTScAzhtJVcaT_qxv1fS3lnhOt2hl7SdZzBF1k6R2SnuoH3K4xQs-_7s49HqU7-Yc5O61923fzFuJII79_F312bgriwfo4dun4Fnlh9P0EhXY3TPpzmM0SMPJnbWfYweDGpTPkXzGTY8wp5HuOMRBh7hXR7hnkfY8QgPePQMfT0-Wh6ehO7wjVBSnmxDBX4hge0qj7SMaVQoKiT8gRM1TRi0glKSM6YjGFKQQvJcqlglSVxwKTSTkj1He9VFpV8gDE4pUVwxHdM8YlLlBPYMjMAwzXIZFQfovX9u2drWWMluROoARf7JZs5JtM5fBiy5-Wcvb3ONV-h-T97XaG9bN_oNuisvt-Wmfuso8gu2JYii
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+adaptive+framework+for+continuous-state+stochastic+dynamic+programming&rft.jtitle=Computers+%26+operations+research&rft.au=Fan%2C+Huiyuan&rft.au=Tarun%2C+Prashant+K.&rft.au=Viswanatha%2C+Amith&rft.au=Chen%2C+Victoria+C.P.&rft.date=2025-11-01&rft.issn=0305-0548&rft.volume=183&rft.spage=107160&rft_id=info:doi/10.1016%2Fj.cor.2025.107160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2025_107160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon