A fully adaptive framework for continuous-state stochastic dynamic programming
Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP). Recent ADP methodologies often employ the design and analysis of computer experiment (DACE) techniques for the FVF approximation. Use of DACE-...
Gespeichert in:
| Veröffentlicht in: | Computers & operations research Jg. 183; S. 107160 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2025
|
| Schlagworte: | |
| ISSN: | 0305-0548 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP). Recent ADP methodologies often employ the design and analysis of computer experiment (DACE) techniques for the FVF approximation. Use of DACE-based ADP approach, however, creates a “chicken and egg” situation where we cannot collect the data for statistical modeling until we know the state space region, but we do not know the state space region until we collect the data. To overcome this dilemma, this paper introduces a sequential state space exploration (SSSE) approach to adaptively identify the state space region for the experimental design while also sampling useful data for the statistical model. In the proposed methodology, the SSSE approach works in tandem with an adaptive value function approximation (AVFA) algorithm that gradually grows the complexity of the statistical model as more data are observed. This novel SSSE-AVFA approach features a “fully adaptive dynamic programming” algorithm, which can automatically and appropriately identify the three critical components (state space region, sample size of the data, and statistical model structure) for FVF approximation, thereby eliminating the need for time-consuming trial-and-error computational runs that were previously required. The SSSE-AVFA approach is examined with a nine-dimensional inventory forecasting problem and is compared with fixed structure runs in which the state space region, sample size of the data, and statistical model structure are assumed in advance. Our proposed methodology ensured either that the established solutions could be more reasonable or that the modeling process could effectively save the computational effort. With its full adaptiveness in determining those critical components, the SSSE-AVFA approach has the potential to be more effective and efficient than the traditional methods in handling a wide range of real-world continuous-state DP problems.
•Proposes a novel adaptive dynamic programming methodology to solve a high-dimensional, continuous-state, multistage, stochastic dynamic programming (SDP) problem.•Presents a methodology with a unique ability to automatically and adaptively identify the state space, sample size, and statistical model structure for future value function approximation for an SDP problem.•Demonstrates the efficiency and efficacy of the proposed methodology using a nine- dimensional inventory forecasting problem. |
|---|---|
| AbstractList | Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP). Recent ADP methodologies often employ the design and analysis of computer experiment (DACE) techniques for the FVF approximation. Use of DACE-based ADP approach, however, creates a “chicken and egg” situation where we cannot collect the data for statistical modeling until we know the state space region, but we do not know the state space region until we collect the data. To overcome this dilemma, this paper introduces a sequential state space exploration (SSSE) approach to adaptively identify the state space region for the experimental design while also sampling useful data for the statistical model. In the proposed methodology, the SSSE approach works in tandem with an adaptive value function approximation (AVFA) algorithm that gradually grows the complexity of the statistical model as more data are observed. This novel SSSE-AVFA approach features a “fully adaptive dynamic programming” algorithm, which can automatically and appropriately identify the three critical components (state space region, sample size of the data, and statistical model structure) for FVF approximation, thereby eliminating the need for time-consuming trial-and-error computational runs that were previously required. The SSSE-AVFA approach is examined with a nine-dimensional inventory forecasting problem and is compared with fixed structure runs in which the state space region, sample size of the data, and statistical model structure are assumed in advance. Our proposed methodology ensured either that the established solutions could be more reasonable or that the modeling process could effectively save the computational effort. With its full adaptiveness in determining those critical components, the SSSE-AVFA approach has the potential to be more effective and efficient than the traditional methods in handling a wide range of real-world continuous-state DP problems.
•Proposes a novel adaptive dynamic programming methodology to solve a high-dimensional, continuous-state, multistage, stochastic dynamic programming (SDP) problem.•Presents a methodology with a unique ability to automatically and adaptively identify the state space, sample size, and statistical model structure for future value function approximation for an SDP problem.•Demonstrates the efficiency and efficacy of the proposed methodology using a nine- dimensional inventory forecasting problem. |
| ArticleNumber | 107160 |
| Author | Fan, Huiyuan Viswanatha, Amith Chen, Victoria C.P. Tarun, Prashant K. |
| Author_xml | – sequence: 1 givenname: Huiyuan surname: Fan fullname: Fan, Huiyuan organization: Industrial and Manufacturing Systems Engineering, University of Texas at Arlington, Arlington, TX 76019, USA – sequence: 2 givenname: Prashant K. surname: Tarun fullname: Tarun, Prashant K. email: ptarun@missouriwestern.edu organization: Steven L. Craig School of Business, Missouri Western State University, St. Joseph, MO 64507, USA – sequence: 3 givenname: Amith surname: Viswanatha fullname: Viswanatha, Amith organization: Industrial and Manufacturing Systems Engineering, University of Texas at Arlington, Arlington, TX 76019, USA – sequence: 4 givenname: Victoria C.P. surname: Chen fullname: Chen, Victoria C.P. organization: Industrial and Manufacturing Systems Engineering, University of Texas at Arlington, Arlington, TX 76019, USA |
| BookMark | eNp9kM9OAjEQh3vAREAfwFtfYLHt7rYkngjxX0L0ouemTKdYZFvSFgxvbwmencNMJplv8ss3IaMQAxJyx9mMMy7vtzOIaSaY6OuuuGQjMmYt6xvWd_NrMsl5y2opwcfkbUHdYbc7UWPNvvgjUpfMgD8xfVMXE4UYig-HeMhNLqYgzSXCl8nFA7WnYIY69yluKjT4sLkhV87sMt7-zSn5fHr8WL40q_fn1-Vi1YBQsjSW16BcdapD6EXnrDBgBZd2LtvajRB83bbY1RPHHag12N5K2TsFBluAdkr45S-kmHNCp_fJDyadNGf6LEFvdZWgzxL0RUJlHi4M1mBHj0ln8BgArU8IRdvo_6F_AVFKaj4 |
| Cites_doi | 10.1002/qre.708 10.1111/1467-9868.00389 10.1016/j.ejor.2020.07.014 10.1109/TNN.2004.824413 10.1016/j.eswa.2017.01.020 10.1080/07408170701759734 10.1287/opre.47.1.38 10.1007/s10479-017-2747-1 10.1007/s10729-013-9252-0 10.1109/ADPRL.2007.368190 10.1002/mcda.1506 10.1287/opre.41.3.484 10.1016/S0167-9473(98)00084-X 10.1080/07408170500232495 10.1287/opre.1080.0576 10.1016/j.cor.2012.11.016 10.1029/WR024i008p01345 10.1016/j.cor.2005.02.043 10.1162/neco.1992.4.1.1 10.1016/j.ejor.2005.01.022 10.1080/07408170600899508 10.1002/mcda.475 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cor.2025.107160 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| ExternalDocumentID | 10_1016_j_cor_2025_107160 S0305054825001881 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABDPE ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO AEBSH AEFWE AEHXG AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK AOUOD APLSM APXCP ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UPT VH1 WUQ XPP ZMT ~02 ~G- 9DU AAYXX ACLOT CITATION EFLBG ~HD |
| ID | FETCH-LOGICAL-c276t-d110117474ec524fd2acd216d86316da221b33e4174f1fc7bcd5d665f7cae3cc3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001514103600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Sat Nov 29 07:43:48 EST 2025 Sat Aug 30 17:14:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sequential exploration Approximate dynamic programming Value function approximation Continuous state space |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c276t-d110117474ec524fd2acd216d86316da221b33e4174f1fc7bcd5d665f7cae3cc3 |
| ParticipantIDs | crossref_primary_10_1016_j_cor_2025_107160 elsevier_sciencedirect_doi_10_1016_j_cor_2025_107160 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Tsui, Barton, Mechesheimer (b9) 2006; 38 Johnson, Stedinger, Shoemaker, Li, Tejada-Guibert (b16) 1993; 41 Pilla, Rosenberger, Chen, Smith (b19) 2008; 40 Chen (b7) 1999; 30 Bellman (b3) 1957 Cervellera, Chen, Wen (b4) 2006; 171 Yang, Chen, Chang, Murphy, Tsai (b29) 2007; 39 Werbos, P.J., 2007. Using ADP to understand and replicate brain intelligence: the next level design. In: Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning. pp. 209–216. Yang, Chen, Chang, Sattler, Wen (b30) 2009; 52 Fan (b11) 2008 Ariyajunya, Chen, Chen, Kim (b1) 2017; 76 Cervellera, Wen, Chen (b6) 2007; 34 Murphy (b18) 2003; 65(Part 2) Cervellera, Muselli (b5) 2004; 15 Tarun, Chen, Corley, Jiang (b23) 2011; 18 Geman, Bienenstoch, Doursat (b15) 1992; 4 Tarun, Chen, Corley (b22) 2014; 21 Foufoula-Georgiou, Kitanidis (b14) 1988; 24 Ariyajunya, Chen, Chen, Kim, Rosenberger (b2) 2021; 289 Chen, Ruppert, Shoemaker (b8) 1999; 47 Sacks, Welch, Mitchell, Wynn (b20) 1989; 4 . Sutton, Barto (b21) 2018 Lin, LeBoulluec, Zeng, Chen, Gatchel (b17) 2014; 17 Werbos (b27) 2004 Dulac-Arnold, C., Mankowitz, D., Hester, T., 2019. Challenges of Real-World Reinforcement Learning. Technical Report Fan, Tarun, Chen (b12) 2013; 40 Tsai, Chen, Chen, Beck (b25) 2004; 132 Tsai, Chen (b24) 2005; 21 Wen (b26) 2005 Fan, Tarun, Chen, Shih, Rosenberger, Kim, Horton (b13) 2018; 263 10.1016/j.cor.2025.107160_b28 Cervellera (10.1016/j.cor.2025.107160_b6) 2007; 34 Ariyajunya (10.1016/j.cor.2025.107160_b2) 2021; 289 Sutton (10.1016/j.cor.2025.107160_b21) 2018 Cervellera (10.1016/j.cor.2025.107160_b4) 2006; 171 Johnson (10.1016/j.cor.2025.107160_b16) 1993; 41 Tsai (10.1016/j.cor.2025.107160_b25) 2004; 132 Cervellera (10.1016/j.cor.2025.107160_b5) 2004; 15 Yang (10.1016/j.cor.2025.107160_b30) 2009; 52 Fan (10.1016/j.cor.2025.107160_b11) 2008 Tsai (10.1016/j.cor.2025.107160_b24) 2005; 21 Yang (10.1016/j.cor.2025.107160_b29) 2007; 39 10.1016/j.cor.2025.107160_b10 Chen (10.1016/j.cor.2025.107160_b9) 2006; 38 Sacks (10.1016/j.cor.2025.107160_b20) 1989; 4 Geman (10.1016/j.cor.2025.107160_b15) 1992; 4 Murphy (10.1016/j.cor.2025.107160_b18) 2003; 65(Part 2) Chen (10.1016/j.cor.2025.107160_b8) 1999; 47 Fan (10.1016/j.cor.2025.107160_b13) 2018; 263 Foufoula-Georgiou (10.1016/j.cor.2025.107160_b14) 1988; 24 Ariyajunya (10.1016/j.cor.2025.107160_b1) 2017; 76 Chen (10.1016/j.cor.2025.107160_b7) 1999; 30 Tarun (10.1016/j.cor.2025.107160_b23) 2011; 18 Werbos (10.1016/j.cor.2025.107160_b27) 2004 Pilla (10.1016/j.cor.2025.107160_b19) 2008; 40 Tarun (10.1016/j.cor.2025.107160_b22) 2014; 21 Lin (10.1016/j.cor.2025.107160_b17) 2014; 17 Fan (10.1016/j.cor.2025.107160_b12) 2013; 40 Bellman (10.1016/j.cor.2025.107160_b3) 1957 Wen (10.1016/j.cor.2025.107160_b26) 2005 |
| References_xml | – year: 2008 ident: b11 article-title: Sequential Frameworks for Statistics-Based Value Function Representation in Approximate Dynamic Programming – volume: 17 start-page: 270 year: 2014 end-page: 283 ident: b17 article-title: An adaptive pain management framework publication-title: Heal. Care Manag. Sci. – volume: 34 start-page: 70 year: 2007 end-page: 90 ident: b6 article-title: Neural network and regression spline value function approximations for stochastic dynamic programming publication-title: Comput. Oper. Res. – year: 2018 ident: b21 article-title: Reinforcement Learning: An Introduction – reference: Werbos, P.J., 2007. Using ADP to understand and replicate brain intelligence: the next level design. In: Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning. pp. 209–216. – volume: 40 start-page: 524 year: 2008 end-page: 537 ident: b19 article-title: A statistical computer experiments approach to airline fleet assignment publication-title: IIE Trans. – volume: 40 start-page: 1076 year: 2013 end-page: 1084 ident: b12 article-title: Adaptive value function approximation for continuous-state stochastic dynamic programming publication-title: Comput. Oper. Res. – volume: 263 start-page: 361 year: 2018 end-page: 384 ident: b13 article-title: Data-driven optimization for dallas fort worth international airport deicing activities publication-title: Ann. Oper. Res. – volume: 15 start-page: 533 year: 2004 end-page: 544 ident: b5 article-title: Deterministic design for neural network learning: An approach based on discrepancy publication-title: IEEE Trans. Neural Netw. – volume: 47 start-page: 38 year: 1999 end-page: 53 ident: b8 article-title: Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming publication-title: Oper. Res. – volume: 30 start-page: 317 year: 1999 end-page: 341 ident: b7 article-title: Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs publication-title: Comput. Statist. Data Anal. – volume: 24 start-page: 1345 year: 1988 end-page: 1359 ident: b14 article-title: Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems publication-title: Water Resour. Res. – volume: 18 start-page: 115 year: 2011 end-page: 142 ident: b23 article-title: Optimizing selection of technologies in a multiple stage, multiple objective wastewater treatment system publication-title: J. Multi-Criteria Decis. Anal. – volume: 21 start-page: 689 year: 2005 end-page: 699 ident: b24 article-title: Flexible and robust implementations of multivariate adaptive regression splines within a wastewater treatment stochastic dynamic program publication-title: Qual. Reliab. Eng. Int. – year: 2005 ident: b26 article-title: Statistics-Based Approach to Stochastic Optimal Control Problems – volume: 41 start-page: 484 year: 1993 end-page: 500 ident: b16 article-title: Numerical solution of continuous-state dynamic programs using linear and spline interpolation publication-title: Oper. Res. – volume: 4 start-page: 1 year: 1992 end-page: 58 ident: b15 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. – volume: 39 start-page: 607 year: 2007 end-page: 615 ident: b29 article-title: Mining and modeling for a metropolitan atlanta ozone pollution decision-making framework publication-title: IIE Trans. – volume: 65(Part 2) start-page: 331 year: 2003 end-page: 366 ident: b18 article-title: Optimal dynamic treatment regimes publication-title: J. R. Stat. Soc. Ser. B – start-page: 3 year: 2004 end-page: 44 ident: b27 article-title: ADP: Goals, opportunities and principles publication-title: Handbook of Learning and Approximate Dynamic Programming – volume: 38 start-page: 273 year: 2006 end-page: 291 ident: b9 article-title: A review of design, modeling and applications of computer experiments publication-title: IIE Trans. – reference: . – year: 1957 ident: b3 article-title: Dynamic Programming – volume: 4 start-page: 409 year: 1989 end-page: 423 ident: b20 article-title: Design and analysis of computer experiments publication-title: Statist. Sci. – volume: 171 start-page: 1139 year: 2006 end-page: 1151 ident: b4 article-title: Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization publication-title: European J. Oper. Res. – volume: 132 start-page: 207 year: 2004 end-page: 221 ident: b25 article-title: Stochastic dynamic programming formulation for a wastewater treatment decision-making framework publication-title: Ann. Oper. Res. Spec. Issue Appl. Optim. under Uncertain. – volume: 21 start-page: 197 year: 2014 end-page: 208 ident: b22 article-title: Divergence of pairwise comparison matrices computed using the successive geometric mean (SGM) method in a multiple stage, multiple objective model publication-title: J. Multi-Criteria Decis. Anal. – volume: 289 start-page: 683 year: 2021 end-page: 695 ident: b2 article-title: Addressing state space multicollinearity for an ozone pollution dynamic control problem publication-title: European J. Oper. Res. – reference: Dulac-Arnold, C., Mankowitz, D., Hester, T., 2019. Challenges of Real-World Reinforcement Learning. Technical Report, – volume: 52 start-page: 484 year: 2009 end-page: 498 ident: b30 article-title: A decision-making framework for ozone pollution control publication-title: Oper. Res. – volume: 76 start-page: 49 year: 2017 end-page: 58 ident: b1 article-title: Data mining for state space orthogonalization in adaptive dynamic programming publication-title: Expert Syst. Appl. – volume: 21 start-page: 689 year: 2005 ident: 10.1016/j.cor.2025.107160_b24 article-title: Flexible and robust implementations of multivariate adaptive regression splines within a wastewater treatment stochastic dynamic program publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.708 – year: 2018 ident: 10.1016/j.cor.2025.107160_b21 – volume: 65(Part 2) start-page: 331 year: 2003 ident: 10.1016/j.cor.2025.107160_b18 article-title: Optimal dynamic treatment regimes publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/1467-9868.00389 – year: 2008 ident: 10.1016/j.cor.2025.107160_b11 – volume: 289 start-page: 683 year: 2021 ident: 10.1016/j.cor.2025.107160_b2 article-title: Addressing state space multicollinearity for an ozone pollution dynamic control problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2020.07.014 – volume: 15 start-page: 533 year: 2004 ident: 10.1016/j.cor.2025.107160_b5 article-title: Deterministic design for neural network learning: An approach based on discrepancy publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.824413 – volume: 132 start-page: 207 year: 2004 ident: 10.1016/j.cor.2025.107160_b25 article-title: Stochastic dynamic programming formulation for a wastewater treatment decision-making framework publication-title: Ann. Oper. Res. Spec. Issue Appl. Optim. under Uncertain. – volume: 76 start-page: 49 year: 2017 ident: 10.1016/j.cor.2025.107160_b1 article-title: Data mining for state space orthogonalization in adaptive dynamic programming publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.01.020 – volume: 4 start-page: 409 year: 1989 ident: 10.1016/j.cor.2025.107160_b20 article-title: Design and analysis of computer experiments publication-title: Statist. Sci. – volume: 40 start-page: 524 issue: 5 year: 2008 ident: 10.1016/j.cor.2025.107160_b19 article-title: A statistical computer experiments approach to airline fleet assignment publication-title: IIE Trans. doi: 10.1080/07408170701759734 – volume: 47 start-page: 38 year: 1999 ident: 10.1016/j.cor.2025.107160_b8 article-title: Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming publication-title: Oper. Res. doi: 10.1287/opre.47.1.38 – volume: 263 start-page: 361 year: 2018 ident: 10.1016/j.cor.2025.107160_b13 article-title: Data-driven optimization for dallas fort worth international airport deicing activities publication-title: Ann. Oper. Res. doi: 10.1007/s10479-017-2747-1 – volume: 17 start-page: 270 issue: 3 year: 2014 ident: 10.1016/j.cor.2025.107160_b17 article-title: An adaptive pain management framework publication-title: Heal. Care Manag. Sci. doi: 10.1007/s10729-013-9252-0 – ident: 10.1016/j.cor.2025.107160_b28 doi: 10.1109/ADPRL.2007.368190 – volume: 21 start-page: 197 year: 2014 ident: 10.1016/j.cor.2025.107160_b22 article-title: Divergence of pairwise comparison matrices computed using the successive geometric mean (SGM) method in a multiple stage, multiple objective model publication-title: J. Multi-Criteria Decis. Anal. doi: 10.1002/mcda.1506 – volume: 41 start-page: 484 year: 1993 ident: 10.1016/j.cor.2025.107160_b16 article-title: Numerical solution of continuous-state dynamic programs using linear and spline interpolation publication-title: Oper. Res. doi: 10.1287/opre.41.3.484 – start-page: 3 year: 2004 ident: 10.1016/j.cor.2025.107160_b27 article-title: ADP: Goals, opportunities and principles – volume: 30 start-page: 317 year: 1999 ident: 10.1016/j.cor.2025.107160_b7 article-title: Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(98)00084-X – volume: 38 start-page: 273 year: 2006 ident: 10.1016/j.cor.2025.107160_b9 article-title: A review of design, modeling and applications of computer experiments publication-title: IIE Trans. doi: 10.1080/07408170500232495 – year: 1957 ident: 10.1016/j.cor.2025.107160_b3 – ident: 10.1016/j.cor.2025.107160_b10 – volume: 52 start-page: 484 year: 2009 ident: 10.1016/j.cor.2025.107160_b30 article-title: A decision-making framework for ozone pollution control publication-title: Oper. Res. doi: 10.1287/opre.1080.0576 – volume: 40 start-page: 1076 issue: 4 year: 2013 ident: 10.1016/j.cor.2025.107160_b12 article-title: Adaptive value function approximation for continuous-state stochastic dynamic programming publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.11.016 – volume: 24 start-page: 1345 year: 1988 ident: 10.1016/j.cor.2025.107160_b14 article-title: Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems publication-title: Water Resour. Res. doi: 10.1029/WR024i008p01345 – volume: 34 start-page: 70 year: 2007 ident: 10.1016/j.cor.2025.107160_b6 article-title: Neural network and regression spline value function approximations for stochastic dynamic programming publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2005.02.043 – volume: 4 start-page: 1 year: 1992 ident: 10.1016/j.cor.2025.107160_b15 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. doi: 10.1162/neco.1992.4.1.1 – year: 2005 ident: 10.1016/j.cor.2025.107160_b26 – volume: 171 start-page: 1139 year: 2006 ident: 10.1016/j.cor.2025.107160_b4 article-title: Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2005.01.022 – volume: 39 start-page: 607 year: 2007 ident: 10.1016/j.cor.2025.107160_b29 article-title: Mining and modeling for a metropolitan atlanta ozone pollution decision-making framework publication-title: IIE Trans. doi: 10.1080/07408170600899508 – volume: 18 start-page: 115 year: 2011 ident: 10.1016/j.cor.2025.107160_b23 article-title: Optimizing selection of technologies in a multiple stage, multiple objective wastewater treatment system publication-title: J. Multi-Criteria Decis. Anal. doi: 10.1002/mcda.475 |
| SSID | ssj0000721 |
| Score | 2.470834 |
| Snippet | Approximate dynamic programming (ADP) carries out approximation of the future value function (FVF) to enable numerical solutions to dynamic programming (DP).... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 107160 |
| SubjectTerms | Approximate dynamic programming Continuous state space Sequential exploration Value function approximation |
| Title | A fully adaptive framework for continuous-state stochastic dynamic programming |
| URI | https://dx.doi.org/10.1016/j.cor.2025.107160 |
| Volume | 183 |
| WOSCitedRecordID | wos001514103600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000721 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhhAc-Cggxpd84ESUCttJ3ByradP4UNVDmXqLHNvRMkFWpc3YTvzrvPgjCYVJ7MDFqlzXifL79fn55feeEXqXpFOpCSchY7wIIwl2MI0-yFBRcDcEiYukMNX1v_D5fLpapYvR6KfPhbn8xqtqenWVrv8r1NAHYLeps7eAu5sUOuAzgA4twA7tPwE_C9qQ-nUglFjbot5ef2Ukha02vawa2PCHJpkoAO9Pnom2XHOg7PH0XrT13S9rvpKBOwFiY_hysda109G5ikFdZPnYRlVPmvK66dm3FHVj-he12JwBosHnif_utNz8ECaOb4xVG-7phQfWMp6W7fuFUgSHk8VkGKygscva620aa7WCsS2u2RtgNjChsB8l9oiBP6y7DTScAzhtJVcaT_qxv1fS3lnhOt2hl7SdZzBF1k6R2SnuoH3K4xQs-_7s49HqU7-Yc5O61923fzFuJII79_F312bgriwfo4dun4Fnlh9P0EhXY3TPpzmM0SMPJnbWfYweDGpTPkXzGTY8wp5HuOMRBh7hXR7hnkfY8QgPePQMfT0-Wh6ehO7wjVBSnmxDBX4hge0qj7SMaVQoKiT8gRM1TRi0glKSM6YjGFKQQvJcqlglSVxwKTSTkj1He9VFpV8gDE4pUVwxHdM8YlLlBPYMjMAwzXIZFQfovX9u2drWWMluROoARf7JZs5JtM5fBiy5-Wcvb3ONV-h-T97XaG9bN_oNuisvt-Wmfuso8gu2JYii |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+adaptive+framework+for+continuous-state+stochastic+dynamic+programming&rft.jtitle=Computers+%26+operations+research&rft.au=Fan%2C+Huiyuan&rft.au=Tarun%2C+Prashant+K.&rft.au=Viswanatha%2C+Amith&rft.au=Chen%2C+Victoria+C.P.&rft.date=2025-11-01&rft.issn=0305-0548&rft.volume=183&rft.spage=107160&rft_id=info:doi/10.1016%2Fj.cor.2025.107160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2025_107160 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |