Enhanced Emotion Recognition Using a Hybrid Autoencoder-LSTM Model Optimized with a Hybrid ACO-WOA Algorithm for Hyperparameter Tuning
Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Opt...
Gespeichert in:
| Veröffentlicht in: | International journal of advanced computer science & applications Jg. 16; H. 4 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
| Schlagworte: | |
| ISSN: | 2158-107X, 2156-5570 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA) for hyperparameters tuning. In this case, Autoencoder can reduce input data dimensionality for input data and find the features relevant for the model’s work. In addition, LSTM is able to work with temporal structures of sequential inputs like speech and videos. The contribution of this research lies in the novel combination method of ACO-WOA which aims at tweaking hyperparameters of Autoencoder-LSTM model. Global aspect of ACO and WOA thereby improve the search efficiency and the accuracy of the proposed emotion recognition system and its generalization capacity. In context with the benchmark dataset for the experimentations of emotion recognition, it has established the efficiency of the proposed model in terms of the conventional methods. Recall rates in recognitive intended various emotions and different modalities were also higher in the hybrid Autoencoder-LSTM model. The optimization algorithms like the ACO-WOA also supported in reducing the computational cost which arose due to hyperparameters tuning. The implementation of this paper is done through Python Software. This implementation shows a high accuracy of 94.12% and 95.94% for audio datasets and image datasets respectively when compared with other deep learning models of Conv LSTM and VGG16. Therefore, the research shows that the presented hybrid approach can be a useful solution for successfully employing emotion recognition for enhancing the creation of the empathetic AI systems and for improving user interactions within various fields including healthcare, entertainment, and customer support. |
|---|---|
| AbstractList | Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion recognition regarding the Hybrid Autoencoder-Long Short-Term Memory (LSTM) model and the newly developed hybrid approach of the Ant Colony Optimization (ACO) and Whale Optimization Algorithm (WOA) for hyperparameters tuning. In this case, Autoencoder can reduce input data dimensionality for input data and find the features relevant for the model’s work. In addition, LSTM is able to work with temporal structures of sequential inputs like speech and videos. The contribution of this research lies in the novel combination method of ACO-WOA which aims at tweaking hyperparameters of Autoencoder-LSTM model. Global aspect of ACO and WOA thereby improve the search efficiency and the accuracy of the proposed emotion recognition system and its generalization capacity. In context with the benchmark dataset for the experimentations of emotion recognition, it has established the efficiency of the proposed model in terms of the conventional methods. Recall rates in recognitive intended various emotions and different modalities were also higher in the hybrid Autoencoder-LSTM model. The optimization algorithms like the ACO-WOA also supported in reducing the computational cost which arose due to hyperparameters tuning. The implementation of this paper is done through Python Software. This implementation shows a high accuracy of 94.12% and 95.94% for audio datasets and image datasets respectively when compared with other deep learning models of Conv LSTM and VGG16. Therefore, the research shows that the presented hybrid approach can be a useful solution for successfully employing emotion recognition for enhancing the creation of the empathetic AI systems and for improving user interactions within various fields including healthcare, entertainment, and customer support. |
| Author | Bala, Kiran Waiker, Vinod Jackulin, T. Muniyandy, Elangovan Krishnaiah, V. V. Jaya Rama Ramesh, Janjhyam Venkata Naga Shahin, Osama R. |
| Author_xml | – sequence: 1 givenname: Vinod surname: Waiker fullname: Waiker, Vinod – sequence: 2 givenname: Janjhyam Venkata Naga surname: Ramesh fullname: Ramesh, Janjhyam Venkata Naga – sequence: 3 givenname: Kiran surname: Bala fullname: Bala, Kiran – sequence: 4 givenname: V. V. Jaya Rama surname: Krishnaiah fullname: Krishnaiah, V. V. Jaya Rama – sequence: 5 givenname: T. surname: Jackulin fullname: Jackulin, T. – sequence: 6 givenname: Elangovan surname: Muniyandy fullname: Muniyandy, Elangovan – sequence: 7 givenname: Osama R. surname: Shahin fullname: Shahin, Osama R. |
| BookMark | eNpNkN9KwzAYxYMoOOfewIuA153506bJZSnTTTYGbkPvStomW8ea1LRF5gP43MZtF34334FzOAd-d-DaWKMAeMBojMOIiafZa5KukjFBJBojzFDI2RUYEByxIIpidH3SPMAo_rgFo7bdI39UEMbpAPxMzE6aQpVwUtuusga-qcJuTXXSm7YyWyjh9Ji7qoRJ31llClsqF8xX6wVceHmAy6ar6urbd3xV3e5fPF0G78sEJoetdd6pobbOm41yjXSyVp1ycN0bv3EPbrQ8tGp0-UOweZ6s02kwX77M0mQeFCRmXVAiHUnBFRUxpUITjENU6lhQVnCqNZcKSVUUeRzlPNellIrniMaK6RALwQUdgsdzb-PsZ6_aLtvb3hk_mVGCGKE-hXwqPKcKZ9vWKZ01rqqlO2YYZSfo2Rl69gc9u0Cnv9uEeAE |
| ContentType | Journal Article |
| Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2025.0160486 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2025_0160486 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c276t-d0f5a98e397339f21140df7936c83ff8ae0aeccb75b8bfdaae8b037e6f4199893 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001503392200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Fri Jul 25 09:47:28 EDT 2025 Sat Nov 29 07:58:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c276t-d0f5a98e397339f21140df7936c83ff8ae0aeccb75b8bfdaae8b037e6f4199893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3206239980?pq-origsite=%requestingapplication% |
| PQID | 3206239980 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_3206239980 crossref_primary_10_14569_IJACSA_2025_0160486 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2025 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2784297 |
| Snippet | Emotion recognition is vital in the human Computer interaction because it improves interaction. Therefore, this paper proposes an improved method for emotion... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Accuracy Algorithms Ant colony optimization Automation College professors Computer science Datasets Deep learning Emotion recognition Emotions Engineering Machine learning Optimization algorithms Social networks Tuning |
| Title | Enhanced Emotion Recognition Using a Hybrid Autoencoder-LSTM Model Optimized with a Hybrid ACO-WOA Algorithm for Hyperparameter Tuning |
| URI | https://www.proquest.com/docview/3206239980 |
| Volume | 16 |
| WOSCitedRecordID | wos001503392200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgMcKBQQhXblA1er3mTjJCcUVlu1pbsbtYtYuER2bNNK3Q92s0jwA_jdnUkc2l64cIkiTWRZevZ4PJl5D-B9VKap0l3JTU9KkjDTPFVBzLsqCVzXxTa0NYnreTwaJdNpmvuE29qXVbY-sXbUZlFSjvwoDISkPsxEfFj-4KQaRX9XvYTGFuwQSwJJN-TRt785FoGHv6yZONFILKbx1HfPYdiQHp2eZf3LDO-IAVF3SiKfe3g6PXTO9YlzvPu_c30Oz3ysybJmcbyAR3a-B7utjgPz23oPnt4jJXwJfwbzq7osgA0aiR920RYZ4XtdYsAUO_lFrV4s21QLosI0dsXPLydDRtpqN2yMjmh2_RvHoDzvvc_7Y_5lnLHs5jvOt7qaMYyZ0bi0K-Ign1FtDptsKFfzCj4fDyb9E-7VGngZxLLiRrhIpYnFACcMU4cXy54wDre_LJPQuURZoXC96DjSiXZGKZtoEcZWuh71-aXha9ieL-b2DTCS5TXO6FKUrhcJoYlzXoTGSY1RtujuA29RKpYNKUdBlxlCtWhQLQjVwqO6DwctToXfouviDqS3_za_gyc0WJN3OYDtarWxh_C4_Fldr1cd2Pk4GOUXHdj6FHN8DoNxp16FaMlPh_nXW4oQ4t4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qChKwoFBAtBSYBSxHndjOeLxAyAqpEpImiAaRnZnxzNBKzaOJAyofwOfwjdzrB7Qbdl2wszTWSDM-ui_few7Aq3aeJNq0JLeRlCRhZniig5i3tAp8y8cudCWJ6zAejdR0mnzYgl_NLAy1VTY2sTTUdpFTjfwwDISkOUwl3i4vOKlG0d_VRkKjgsXAXX7HlG39pv8Ov-_rIDjqTjo9XqsK8DyIZcGt8G2dKIeOOAwTjwlQJKxHmMpchd4r7YTGc5m4bZTxVmunjAhjJ31E82hEvoQm_1YUKkktZIOY_6npCAw2ZMn8iY6UWFPjaT2th2FKcth_n3ZOUsxJA6IKlUR2d90bXncGpYc72vnf7uYB3K9jaZZW4H8IW26-CzuNTgWrzdYu3LtCuvgIfnbnp2XbA-tWEkbsY9NEhc9lCwXTrHdJo2ws3RQLovq0bsWHJ5NjRtpx52yMhnZ29gP3oDr2ldc7Y_55nLL0_CveT3E6Y5gT4OLSrYhjfUa9R2yyoVrUY_h0I3fzBLbni7l7Coxkh623Jhe5j9pCGOLUF6H10mAWIVp7wBtUZMuKdCSjZI1QlFUoyghFWY2iPThocJHVJmid_QXF_r-XX8Kd3uR4mA37o8EzuEsbVzWmA9guVhv3HG7n34qz9epFiXYGX24aQr8B7S88SA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Emotion+Recognition+Using+a+Hybrid+Autoencoder-LSTM+Model+Optimized+with+a+Hybrid+ACO-WOA+Algorithm+for+Hyperparameter+Tuning&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Waiker%2C+Vinod&rft.au=Ramesh%2C+Janjhyam+Venkata+Naga&rft.au=Bala%2C+Kiran&rft.au=Krishnaiah%2C+V.+V.+Jaya+Rama&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=4&rft_id=info:doi/10.14569%2FIJACSA.2025.0160486&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160486 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |