Two Novel Instance Selection Methods Combining Algorithm Performance and Landscape Analysis: A Comparative Study in Continuous Optimization

A reliable benchmark library is essential for advancing research in global optimization by enabling fair comparisons and rigorous testing of optimization algorithms across diverse problem landscapes. In this article, we focus on instance selection methods, which aim to choose representative problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. PP; S. 1 - 14
Hauptverfasser: Stripinis, Linas, Kudela, Jakub, Paulavicius, Remigijus
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 03.11.2025
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A reliable benchmark library is essential for advancing research in global optimization by enabling fair comparisons and rigorous testing of optimization algorithms across diverse problem landscapes. In this article, we focus on instance selection methods, which aim to choose representative problems for evaluating algorithm performance. We present a comprehensive review of existing instance selection methods, highlighting their strengths and limitations, particularly in balancing the consideration of algorithm performance and the analysis of problem characteristics using exploratory landscape analysis. Building on these insights, we introduce two novel instance selection methods that leverage both algorithm performance data and landscape analysis information to construct diverse and informative benchmark sets. For evaluation, we benchmark our approaches against four existing instance selection methods on the recently expanded DIRECTGOLib v2.0 library. Our results demonstrate that the proposed methods effectively identify representative instances that capture a wide range of problem characteristics, enabling a more comprehensive evaluation of algorithm performance. These findings have significant implications for the development and assessment of new optimization algorithms, ultimately contributing to more reliable and robust solutions for real-world optimization problems.
AbstractList A reliable benchmark library is essential for advancing research in global optimization by enabling fair comparisons and rigorous testing of optimization algorithms across diverse problem landscapes. In this article, we focus on instance selection methods, which aim to choose representative problems for evaluating algorithm performance. We present a comprehensive review of existing instance selection methods, highlighting their strengths and limitations, particularly in balancing the consideration of algorithm performance and the analysis of problem characteristics using exploratory landscape analysis. Building on these insights, we introduce two novel instance selection methods that leverage both algorithm performance data and landscape analysis information to construct diverse and informative benchmark sets. For evaluation, we benchmark our approaches against four existing instance selection methods on the recently expanded DIRECTGOLib v2.0 library. Our results demonstrate that the proposed methods effectively identify representative instances that capture a wide range of problem characteristics, enabling a more comprehensive evaluation of algorithm performance. These findings have significant implications for the development and assessment of new optimization algorithms, ultimately contributing to more reliable and robust solutions for real-world optimization problems.
A reliable benchmark library is essential for advancing research in global optimization by enabling fair comparisons and rigorous testing of optimization algorithms across diverse problem landscapes. In this article, we focus on instance selection methods, which aim to choose representative problems for evaluating algorithm performance. We present a comprehensive review of existing instance selection methods, highlighting their strengths and limitations, particularly in balancing the consideration of algorithm performance and the analysis of problem characteristics using exploratory landscape analysis. Building on these insights, we introduce two novel instance selection methods that leverage both algorithm performance data and landscape analysis information to construct diverse and informative benchmark sets. For evaluation, we benchmark our approaches against four existing instance selection methods on the recently expanded DIRECTGOLib v2.0 library. Our results demonstrate that the proposed methods effectively identify representative instances that capture a wide range of problem characteristics, enabling a more comprehensive evaluation of algorithm performance. These findings have significant implications for the development and assessment of new optimization algorithms, ultimately contributing to more reliable and robust solutions for real-world optimization problems.A reliable benchmark library is essential for advancing research in global optimization by enabling fair comparisons and rigorous testing of optimization algorithms across diverse problem landscapes. In this article, we focus on instance selection methods, which aim to choose representative problems for evaluating algorithm performance. We present a comprehensive review of existing instance selection methods, highlighting their strengths and limitations, particularly in balancing the consideration of algorithm performance and the analysis of problem characteristics using exploratory landscape analysis. Building on these insights, we introduce two novel instance selection methods that leverage both algorithm performance data and landscape analysis information to construct diverse and informative benchmark sets. For evaluation, we benchmark our approaches against four existing instance selection methods on the recently expanded DIRECTGOLib v2.0 library. Our results demonstrate that the proposed methods effectively identify representative instances that capture a wide range of problem characteristics, enabling a more comprehensive evaluation of algorithm performance. These findings have significant implications for the development and assessment of new optimization algorithms, ultimately contributing to more reliable and robust solutions for real-world optimization problems.
Author Kudela, Jakub
Paulavicius, Remigijus
Stripinis, Linas
Author_xml – sequence: 1
  givenname: Linas
  orcidid: 0000-0001-9680-5847
  surname: Stripinis
  fullname: Stripinis, Linas
  email: linas.stripinis@mif.vu.lt
  organization: Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
– sequence: 2
  givenname: Jakub
  orcidid: 0000-0002-4372-2105
  surname: Kudela
  fullname: Kudela, Jakub
  email: jakub.kudela@vutbr.cz
  organization: Institute of Automation and Computer Science, Brno University of Technology, Brno, Czech Republic
– sequence: 3
  givenname: Remigijus
  orcidid: 0000-0003-2057-2922
  surname: Paulavicius
  fullname: Paulavicius, Remigijus
  email: remigijus.paulavicius@mif.vu.lt
  organization: Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41182938$$D View this record in MEDLINE/PubMed
BookMark eNpFkc1u1DAUhS1URH_oAyAh5CWbGfw3ic1uGFGoNFAkhgWryHauW6PETmOnaHgFXhqHGcpd-FpX3znX8jlHJyEGQOgFJUtKiXqz23x_t2SErZa8YiuiVk_QGaOVXDBWr04e71V9ii5T-kFKyTJS8hk6FZRKprg8Q793PyP-HB-gw9chZR0s4K_Qgc0-BvwJ8l1sE97E3vjgwy1ed7dx9Pmux19gdHHs_yp0aPG2HMnqAfA66G6ffHqL17Ny0KPO_qH45qndYx_KMGQfpjglfDNk3_tfel73HD11uktweewX6NvV-93m42J78-F6s94uLKurvJDOCCmFddRRy4VQtG2Fqa2pjWq5doppbsBY64jQVFpXV67mkhheSdOC4hfo9cF3GOP9BCk3vU8Wuk4HKG9qOKukEKwidUFfHdHJ9NA2w-h7Pe6bfx9YAHoA7BhTGsE9IpQ0c07NnFMz59QccyqalweNB4D_PGVMEKL4HxvSkOE
CODEN ITCEB8
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2025.3625095
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 14
ExternalDocumentID 41182938
10_1109_TCYB_2025_3625095
11224009
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Czech Science Foundation
  grantid: 24-12474S
  funderid: 10.13039/501100004298
– fundername: IGA Brno University of Technology
  grantid: FSI-S-23-8394
  funderid: 10.13039/501100003473
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
7X8
ID FETCH-LOGICAL-c276t-8fb4884cf1f1c34491dd4b7cb7b9d3af92a3bebccf04a18cf76f7380b368bde93
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Tue Nov 04 16:35:58 EST 2025
Wed Nov 05 02:04:24 EST 2025
Sat Nov 29 06:55:52 EST 2025
Wed Nov 19 08:26:46 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-8fb4884cf1f1c34491dd4b7cb7b9d3af92a3bebccf04a18cf76f7380b368bde93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2057-2922
0000-0001-9680-5847
0000-0002-4372-2105
PMID 41182938
PQID 3268442607
PQPubID 23479
PageCount 14
ParticipantIDs ieee_primary_11224009
pubmed_primary_41182938
proquest_miscellaneous_3268442607
crossref_primary_10_1109_TCYB_2025_3625095
PublicationCentury 2000
PublicationDate 2025-Nov-03
PublicationDateYYYYMMDD 2025-11-03
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-Nov-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000816898
Score 2.4034054
SecondaryResourceType review_article
Snippet A reliable benchmark library is essential for advancing research in global optimization by enabling fair comparisons and rigorous testing of optimization...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithm performance
Benchmark testing
black-box global optimization
Cybernetics
Euclidean distance
exploratory landscape analysis
instance selection methods
Libraries
numerical benchmarking
Optimization
Reliability
Reviews
Runtime
Training
Vectors
Title Two Novel Instance Selection Methods Combining Algorithm Performance and Landscape Analysis: A Comparative Study in Continuous Optimization
URI https://ieeexplore.ieee.org/document/11224009
https://www.ncbi.nlm.nih.gov/pubmed/41182938
https://www.proquest.com/docview/3268442607
Volume PP
WOSCitedRecordID wos001612903100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dTxQxFG2E-OCLiqCuArkmPIjJwHTamba8LRuIJrqSsCbr06S90-omMGP2A-Nv4E_TdrtsfOCBtz7MZ04_7m3vOYeQg0pYzVDyTGKJGcdcZ0pTlnHjc-ai0BpNE80mxHAox2N1kcjqkQtjrY3FZ_YoNONZftPhImyVHVMaSx7VBtkQolqSte43VKKDRPS-LXwj82GFSKeYNFfHo8HPU58NFuWRn7H9Iln-tw5FY5WHY8y41py_eORXviTPU1AJ_WUv2CJPbPuKbKVhO4OPSVv6cJvcjv52MOxu7BV8iYEhWriMVjgeH_gW7aRn4CcJE40joH_1q5tO5r-v4WLNMADdNvA1cIRD9RSsdE1OoA-DtZg4hBLFfzBpIShgTdpFt5jBdz9DXSfq5w75cX42GnzOkh9DhoWo5pl0xg93jo46ioxzRZvGY4pGGNUw7VShmbEG0eVcU4lOVE4wmRtWSdNYxV6TzbZr7VsCTJSCFlhy1MhpkRvKnCu5RV1WzHHXI59W6NR_lrIbdUxXclUHKOsAZZ2g7JGdgML6wgRAj3xYAVr7QRNOQnRr_c_WLGjcBG1-0SNvlkjf381DyqWYfPfAU9-TZ-HlkY_IdsnmfLqwe-Qp3swns-m-75ljuR975h04dOId
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgIMGGUih0aIGLxAKQ0saPxHF3w4iqFdOhEoNUVpF9Y9OR2gTNo4hv4KexPZ6OWHTBzoskcnT8uNe-5xxC3pbSao6VyCosMBOY60xpyjNhfM7MmNZommg2IUej6vxcnSWyeuTCWGtj8ZndD814l990uAhHZQeUxpJHdZfcK4Rg-ZKudXOkEj0kovst843MBxYy3WPSXB2MB98_-nyQFft-zfbbZPHPThStVW6PMuNuc7T5n_18TB6lsBL6y3GwRe7Y9gnZShN3Bu-SuvT7p-TP-FcHo-7aXsJJDA3RwtdohuMRgtNoKD0Dv0yYaB0B_csf3XQyv7iCszXHAHTbwDCwhEP9FKyUTQ6hD4O1nDiEIsXfMGkhaGBN2kW3mMEXv0ZdJfLnNvl29Gk8OM6SI0OGTJbzrHLGT3iBjjqKXAhFm8ajikYa1XDtFNPcWIPocqFphU6WTvIqN7ysTGMVf0Y22q61OwS4LCRlWAjUKCjLDeXOFcKiLkruhOuRDyt06p9L4Y06Jiy5qgOUdYCyTlD2yHZAYf1gAqBH3qwArf20CXchurX-Z2seVG6COr_skedLpG_eFiHpUrx6cctXX5MHx-PTYT08GX3eJQ9DRyI7ke-Rjfl0YV-S-3g9n8ymr-L4_AvJNeR8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Novel+Instance+Selection+Methods+Combining+Algorithm+Performance+and+Landscape+Analysis%3A+A+Comparative+Study+in+Continuous+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Stripinis%2C+Linas&rft.au=Kudela%2C+Jakub&rft.au=Paulavicius%2C+Remigijus&rft.date=2025-11-03&rft.pub=IEEE&rft.issn=2168-2267&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTCYB.2025.3625095&rft.externalDocID=11224009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon