L_1$-Regularized STAP Algorithms With a Generalized Sidelobe Canceler Architecture for Airborne Radar
In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 60; no. 2; pp. 674 - 686 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.02.2012
|
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe canceling, which leads to the sparsity of the STAP filter weight vector. The core idea is to impose a sparse regularization ( L 1 -norm type) to the minimum variance criterion. By solving this optimization problem, an L 1 -regularized recursive least squares ( L 1 -based RLS) adaptive algorithm is developed. We also discuss the SINR steady-state performance and the penalty parameter setting of the proposed algorithm. To adaptively set the penalty parameter, two switched schemes are proposed for L 1 -based RLS algorithms. The computational complexity analysis shows that the proposed algorithms have the same complexity level as the conventional RLS algorithm ( O ( ( NM ) 2 ) ) , where NM is the filter weight vector length), but a significantly lower complexity level than the loaded sample covariance matrix inversion algorithm ( O ( ( NM ) 3 ) ) and the compressive sensing STAP algorithm ( O ( ( N sN d ) 3 ) , where N sN d Unknown character NM is the angle-Doppler plane size). The simulation results show that the proposed STAP algorithms converge rapidly and provide a SINR improvement using a small number of snapshots. |
|---|---|
| AbstractList | In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe canceling, which leads to the sparsity of the STAP filter weight vector. The core idea is to impose a sparse regularization ( L 1 -norm type) to the minimum variance criterion. By solving this optimization problem, an L 1 -regularized recursive least squares ( L 1 -based RLS) adaptive algorithm is developed. We also discuss the SINR steady-state performance and the penalty parameter setting of the proposed algorithm. To adaptively set the penalty parameter, two switched schemes are proposed for L 1 -based RLS algorithms. The computational complexity analysis shows that the proposed algorithms have the same complexity level as the conventional RLS algorithm ( O ( ( NM ) 2 ) ) , where NM is the filter weight vector length), but a significantly lower complexity level than the loaded sample covariance matrix inversion algorithm ( O ( ( NM ) 3 ) ) and the compressive sensing STAP algorithm ( O ( ( N sN d ) 3 ) , where N sN d Unknown character NM is the angle-Doppler plane size). The simulation results show that the proposed STAP algorithms converge rapidly and provide a SINR improvement using a small number of snapshots. |
| Author | Yang, Zhaocheng de Lamare, Rodrigo C. Li, Xiang |
| Author_xml | – sequence: 1 givenname: Zhaocheng surname: Yang fullname: Yang, Zhaocheng – sequence: 2 givenname: Rodrigo C. surname: de Lamare fullname: de Lamare, Rodrigo C. – sequence: 3 givenname: Xiang surname: Li fullname: Li, Xiang |
| BookMark | eNp1kDFPwzAQRi1UJNrCzuiBgSXFdhInGaMKClIlqrYItsi9nFujNC62M8CvJ1U7ITF9p9P7Tqc3IoPWtkjILWcTzlnxsF4tJoJxPhE8E0mcXpAhLxIesSSTg35maRylefZxRUbefzLGk6SQQ4Lzit9FS9x2jXLmB2u6WpcLWjZb60zY7T1974MqOsMWnWpOiKmxsRukU9UCNuho6WBnAkLoHFJt-4VxG-tapEtVK3dNLrVqPN6cc0zenh7X0-do_jp7mZbzCEQmQ5TnoDXXmcyACUxkDErylOUSZCI0KAYIfCME1FIJJhXWkGrcQM50hnkB8Zjcn-4enP3q0Idqb3z_YaNatJ2vOOMsL_IiK3pUnlBw1nuHugITVDC2DU6Zpkero9eq91odvVZnr32R_SkenNkr9_1_5Rd7Bn07 |
| CitedBy_id | crossref_primary_10_3390_rs13224724 crossref_primary_10_3390_s22072664 crossref_primary_10_3390_rs16020307 crossref_primary_10_3390_rs16234401 crossref_primary_10_1016_j_dsp_2024_104486 crossref_primary_10_1049_iet_rsn_2018_5473 crossref_primary_10_1049_rsn2_12271 crossref_primary_10_1109_LGRS_2012_2236639 crossref_primary_10_1049_rsn2_12152 crossref_primary_10_1109_ACCESS_2020_2976534 crossref_primary_10_3390_app13095653 crossref_primary_10_1049_iet_rsn_2018_5307 crossref_primary_10_1016_j_sigpro_2018_11_013 crossref_primary_10_1109_TGRS_2021_3125043 crossref_primary_10_1016_j_ins_2013_06_029 crossref_primary_10_1049_rsn2_12186 crossref_primary_10_1109_JOE_2014_2329430 crossref_primary_10_1109_TAES_2019_2921141 crossref_primary_10_1109_TAES_2023_3274104 crossref_primary_10_1155_2014_196507 crossref_primary_10_1109_TSP_2016_2569471 crossref_primary_10_3390_rs14153800 crossref_primary_10_1109_TSP_2011_2172435 crossref_primary_10_1109_TSP_2020_3021257 crossref_primary_10_1155_2015_171808 crossref_primary_10_1109_JSEN_2019_2936681 crossref_primary_10_1016_j_sigpro_2024_109585 crossref_primary_10_1007_s00034_016_0301_z crossref_primary_10_1049_iet_rsn_2018_5239 crossref_primary_10_1016_j_sigpro_2014_07_024 crossref_primary_10_1049_iet_rsn_2015_0307 crossref_primary_10_1007_s11771_017_3646_y crossref_primary_10_3390_rs16101737 crossref_primary_10_1049_iet_rsn_2017_0152 crossref_primary_10_1109_TSP_2025_3560234 crossref_primary_10_3390_rs14163959 crossref_primary_10_1109_JSEN_2021_3060510 crossref_primary_10_1109_TAES_2019_2906418 crossref_primary_10_1109_ACCESS_2020_3001304 crossref_primary_10_1016_j_dsp_2020_102686 crossref_primary_10_1109_ACCESS_2022_3156638 crossref_primary_10_1109_TAES_2017_2714938 crossref_primary_10_1016_j_sigpro_2013_03_033 crossref_primary_10_1049_iet_spr_2014_0255 crossref_primary_10_1049_iet_rsn_2017_0425 crossref_primary_10_1109_ACCESS_2018_2822046 crossref_primary_10_1109_TAES_2022_3192223 crossref_primary_10_1109_TAES_2014_120523 crossref_primary_10_1016_j_dsp_2016_10_005 crossref_primary_10_1007_s00034_019_01215_w crossref_primary_10_3390_rs16010096 crossref_primary_10_1109_JSTARS_2021_3090069 crossref_primary_10_1049_iet_spr_2013_0069 crossref_primary_10_1109_JSTARS_2025_3542421 crossref_primary_10_1049_iet_rsn_2016_0256 crossref_primary_10_1109_JSEN_2025_3538793 crossref_primary_10_1109_ACCESS_2019_2911136 crossref_primary_10_1049_iet_rsn_2015_0044 crossref_primary_10_1109_JSEN_2025_3566716 crossref_primary_10_1049_el_2017_1748 crossref_primary_10_1109_TAES_2015_140401 crossref_primary_10_1109_TSP_2013_2258340 crossref_primary_10_1109_ACCESS_2018_2866497 |
| Cites_doi | 10.1109/TSP.2009.2018641 10.1109/RADAR.2010.5494384 10.1109/7.625132 10.1109/ICASSP.2010.5496217 10.1109/TAES.2011.5937257 10.1002/0471221104 10.1109/TSP.2009.2014277 10.1109/MAES.2004.1263229 10.1109/TGRS.2010.2051231 10.1109/ICASSP.2010.5496222 10.1109/ICASSP.2010.5496219 10.1109/78.80767 10.1109/TSP.2010.2046897 10.1109/LSP.2007.907995 10.1109/TVT.2009.2038391 10.1109/TSP.2008.919392 10.1109/TSP.2011.2172435 10.1109/7.766945 10.1109/ICASSP.2006.1661143 10.1109/MSP.2006.1593336 10.1109/TSP.2010.2048212 10.1109/78.902111 10.1109/IGARSS.2009.5417664 10.1016/j.sigpro.2009.08.002 10.1109/ISSPA.2010.5605592 10.1109/ICASSP.2009.4960316 10.1109/MSP.2010.936023 10.1109/TAES.2006.248216 10.18637/jss.v033.i01 10.1109/JSTSP.2009.2039173 10.1109/7.303737 10.1109/TIT.2006.885522 10.1109/TAES.1973.309792 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7SC 7SP 8FD F28 FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2011.2172435 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture |
| EISSN | 1941-0476 |
| EndPage | 686 |
| ExternalDocumentID | 10_1109_TSP_2011_2172435 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAWTH AAYXX ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 7SC 7SP 8FD ABAZT F28 FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c276t-88cff1f767c02e463ca615086c642fca0cec1b22cd6a206aedc5febc80f7e89c3 |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299434300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Thu Oct 02 13:58:03 EDT 2025 Tue Nov 18 22:20:45 EST 2025 Sat Nov 29 04:10:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c276t-88cff1f767c02e463ca615086c642fca0cec1b22cd6a206aedc5febc80f7e89c3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1010898979 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1010898979 crossref_citationtrail_10_1109_TSP_2011_2172435 crossref_primary_10_1109_TSP_2011_2172435 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-02-00 20120201 |
| PublicationDateYYYYMMDD | 2012-02-01 |
| PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-00 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationYear | 2012 |
| References | ref35 ref13 (ref43) 0 ref12 ref37 ref15 ref36 ref14 ref31 ref30 chen (ref34) 2009 guerci (ref3) 2003 ref11 ref32 ref10 ref1 ref17 ref38 ref16 ref19 ref18 diniz (ref40) 2002 (ref41) 0 ref23 ref26 van trees (ref42) 2002 haykin (ref39) 2001 ref20 ref22 ref21 zhang (ref24) 2009 chen (ref33) 2009 ward (ref2) 1998 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 sun (ref25) 2010 |
| References_xml | – ident: ref13 doi: 10.1109/TSP.2009.2018641 – start-page: 2/1 year: 1998 ident: ref2 article-title: space-time adaptive processing for airborne radar publication-title: IEE Colloquium on Space-Time Adaptive Processing (Ref No 1998/241) – start-page: 3125 year: 2009 ident: ref33 article-title: Sparse LMS for system identification publication-title: Proc IEEE Int Conf Acoust Speech Signal Process – ident: ref26 doi: 10.1109/RADAR.2010.5494384 – ident: ref7 doi: 10.1109/7.625132 – ident: ref28 doi: 10.1109/ICASSP.2010.5496217 – ident: ref15 doi: 10.1109/TAES.2011.5937257 – year: 2002 ident: ref42 publication-title: Optimal Array Processing Part IV of Detection Estimation and Modulation Theory doi: 10.1002/0471221104 – ident: ref19 doi: 10.1109/TSP.2009.2014277 – ident: ref4 doi: 10.1109/MAES.2004.1263229 – ident: ref21 doi: 10.1109/TGRS.2010.2051231 – year: 0 ident: ref43 – ident: ref16 doi: 10.1109/ICASSP.2010.5496222 – ident: ref27 doi: 10.1109/ICASSP.2010.5496219 – ident: ref5 doi: 10.1109/78.80767 – ident: ref31 doi: 10.1109/TSP.2010.2046897 – ident: ref10 doi: 10.1109/LSP.2007.907995 – ident: ref11 doi: 10.1109/TVT.2009.2038391 – ident: ref20 doi: 10.1109/TSP.2008.919392 – year: 0 ident: ref41 – year: 2003 ident: ref3 publication-title: Space-Time Adaptive Processing for Radar – ident: ref38 doi: 10.1109/TSP.2011.2172435 – ident: ref8 doi: 10.1109/7.766945 – ident: ref22 doi: 10.1109/ICASSP.2006.1661143 – year: 2002 ident: ref40 publication-title: Adaptive Filtering Algorithms and Practical Implementation – ident: ref17 doi: 10.1109/MSP.2006.1593336 – year: 2001 ident: ref39 publication-title: Adaptive Filter Theory – ident: ref14 doi: 10.1109/TSP.2010.2048212 – ident: ref9 doi: 10.1109/78.902111 – ident: ref23 doi: 10.1109/IGARSS.2009.5417664 – year: 2010 ident: ref25 publication-title: Airborne Radar STAP Using Sparse Recovery of Clutter Spectrum – ident: ref12 doi: 10.1016/j.sigpro.2009.08.002 – ident: ref36 doi: 10.1109/ISSPA.2010.5605592 – ident: ref37 doi: 10.1109/ICASSP.2009.4960316 – ident: ref30 doi: 10.1109/MSP.2010.936023 – ident: ref18 doi: 10.1109/TAES.2006.248216 – year: 2009 ident: ref24 publication-title: A Class of Novel STAP Algorithms Using Sparse Recovery Technique – ident: ref32 doi: 10.18637/jss.v033.i01 – ident: ref35 doi: 10.1109/JSTSP.2009.2039173 – year: 2009 ident: ref34 publication-title: Regularized Least-Mean-Square Algorithms – ident: ref6 doi: 10.1109/7.303737 – ident: ref29 doi: 10.1109/TIT.2006.885522 – ident: ref1 doi: 10.1109/TAES.1973.309792 |
| SSID | ssj0014496 |
| Score | 2.3963177 |
| Snippet | In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 674 |
| SubjectTerms | Adaptive algorithms Airborne radar Algorithms Architecture Complexity Mathematical analysis Sidelobes Vectors (mathematics) |
| Title | L_1$-Regularized STAP Algorithms With a Generalized Sidelobe Canceler Architecture for Airborne Radar |
| URI | https://www.proquest.com/docview/1010898979 |
| Volume | 60 |
| WOSCitedRecordID | wos000299434300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZZt8N2GPtJu19o0MsIXm1HseRjCBs7lBKyDMIuRpbk1JDaxU1L6R_Uv3PvSZbjdGysh11MUBzh5H15etL73vsIORwxlhd5ZDA1KAOmYcOaK20CmUMkpzFEZ9KKTfCTE7FcprPB4NbXwlyteVWJ6-v0_L-aGsbA2Fg6ew9zd5PCALwGo8MVzA7XfzL8cQbOiQVzKzLflDcYUS4ms-FkvaqbcnN6hpRXLGjzLafdLdjuCokXU4TBGpnz_RQDkhEnZQOAgaB0LrVs-lEt7hhRbMIrj9sUBDJDsMzLVSL4FRIdTHtE_fNUolzX9g1thsfyTLpT8Xmtm3JVD6efO86QJR4sAc-r_lkFkj463odzr_CXD8aCL93q48ZSFgUhcyow3ic7jYEWe3HPwSZO06ddqxPXRvv3ZcB2UV18n7kerSjCxVxXlN2O23dWwo6faHdGYZrBDBnOkLUzPCAPYz5OU1cn2GWrGLM6cN238-nwMD26-wy74c_u6m9DmsUz8rTdi9CJw9BzMjDVC_Kk16HyJTGApsM-lihiiW6xRBFLVNIelqjHEvVYon0sUcAS9ViiFkuvyI-vXxbTb0GrzBGomCebQAhVFFHBE67C2LBkpKQVFkgUbGcLJUNlVJTHsdKJjMNEGo2kxlyJsOBGpGr0muxVdWX2CRW8GOfRSEhUzIp5LLTAlokQQuQsT3R0QI78D5aptm09qqessz8Z6YB86j5x7lq2_OXej94GGfhVTJbJytSXF0h9DFFaladv7jHfW_J4i_t3ZG_TXJr35JG62pQXzQeLml9Qt5ci |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L_1%24-Regularized+STAP+Algorithms+With+a+Generalized+Sidelobe+Canceler+Architecture+for+Airborne+Radar&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Yang%2C+Zhaocheng&rft.au=de+Lamare%2C+Rodrigo+C.&rft.au=Li%2C+Xiang&rft.date=2012-02-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=60&rft.issue=2&rft.spage=674&rft.epage=686&rft_id=info:doi/10.1109%2FTSP.2011.2172435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2011_2172435 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |