L_1$-Regularized STAP Algorithms With a Generalized Sidelobe Canceler Architecture for Airborne Radar

In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 60; no. 2; pp. 674 - 686
Main Authors: Yang, Zhaocheng, de Lamare, Rodrigo C., Li, Xiang
Format: Journal Article
Language:English
Published: 01.02.2012
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe canceling, which leads to the sparsity of the STAP filter weight vector. The core idea is to impose a sparse regularization ( L 1 -norm type) to the minimum variance criterion. By solving this optimization problem, an L 1 -regularized recursive least squares ( L 1 -based RLS) adaptive algorithm is developed. We also discuss the SINR steady-state performance and the penalty parameter setting of the proposed algorithm. To adaptively set the penalty parameter, two switched schemes are proposed for L 1 -based RLS algorithms. The computational complexity analysis shows that the proposed algorithms have the same complexity level as the conventional RLS algorithm ( O ( ( NM ) 2 ) ) , where NM is the filter weight vector length), but a significantly lower complexity level than the loaded sample covariance matrix inversion algorithm ( O ( ( NM ) 3 ) ) and the compressive sensing STAP algorithm ( O ( ( N sN d ) 3 ) , where N sN d Unknown character NM is the angle-Doppler plane size). The simulation results show that the proposed STAP algorithms converge rapidly and provide a SINR improvement using a small number of snapshots.
AbstractList In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe canceling, which leads to the sparsity of the STAP filter weight vector. The core idea is to impose a sparse regularization ( L 1 -norm type) to the minimum variance criterion. By solving this optimization problem, an L 1 -regularized recursive least squares ( L 1 -based RLS) adaptive algorithm is developed. We also discuss the SINR steady-state performance and the penalty parameter setting of the proposed algorithm. To adaptively set the penalty parameter, two switched schemes are proposed for L 1 -based RLS algorithms. The computational complexity analysis shows that the proposed algorithms have the same complexity level as the conventional RLS algorithm ( O ( ( NM ) 2 ) ) , where NM is the filter weight vector length), but a significantly lower complexity level than the loaded sample covariance matrix inversion algorithm ( O ( ( NM ) 3 ) ) and the compressive sensing STAP algorithm ( O ( ( N sN d ) 3 ) , where N sN d Unknown character NM is the angle-Doppler plane size). The simulation results show that the proposed STAP algorithms converge rapidly and provide a SINR improvement using a small number of snapshots.
Author Yang, Zhaocheng
de Lamare, Rodrigo C.
Li, Xiang
Author_xml – sequence: 1
  givenname: Zhaocheng
  surname: Yang
  fullname: Yang, Zhaocheng
– sequence: 2
  givenname: Rodrigo C.
  surname: de Lamare
  fullname: de Lamare, Rodrigo C.
– sequence: 3
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
BookMark eNp1kDFPwzAQRi1UJNrCzuiBgSXFdhInGaMKClIlqrYItsi9nFujNC62M8CvJ1U7ITF9p9P7Tqc3IoPWtkjILWcTzlnxsF4tJoJxPhE8E0mcXpAhLxIesSSTg35maRylefZxRUbefzLGk6SQQ4Lzit9FS9x2jXLmB2u6WpcLWjZb60zY7T1974MqOsMWnWpOiKmxsRukU9UCNuho6WBnAkLoHFJt-4VxG-tapEtVK3dNLrVqPN6cc0zenh7X0-do_jp7mZbzCEQmQ5TnoDXXmcyACUxkDErylOUSZCI0KAYIfCME1FIJJhXWkGrcQM50hnkB8Zjcn-4enP3q0Idqb3z_YaNatJ2vOOMsL_IiK3pUnlBw1nuHugITVDC2DU6Zpkero9eq91odvVZnr32R_SkenNkr9_1_5Rd7Bn07
CitedBy_id crossref_primary_10_3390_rs13224724
crossref_primary_10_3390_s22072664
crossref_primary_10_3390_rs16020307
crossref_primary_10_3390_rs16234401
crossref_primary_10_1016_j_dsp_2024_104486
crossref_primary_10_1049_iet_rsn_2018_5473
crossref_primary_10_1049_rsn2_12271
crossref_primary_10_1109_LGRS_2012_2236639
crossref_primary_10_1049_rsn2_12152
crossref_primary_10_1109_ACCESS_2020_2976534
crossref_primary_10_3390_app13095653
crossref_primary_10_1049_iet_rsn_2018_5307
crossref_primary_10_1016_j_sigpro_2018_11_013
crossref_primary_10_1109_TGRS_2021_3125043
crossref_primary_10_1016_j_ins_2013_06_029
crossref_primary_10_1049_rsn2_12186
crossref_primary_10_1109_JOE_2014_2329430
crossref_primary_10_1109_TAES_2019_2921141
crossref_primary_10_1109_TAES_2023_3274104
crossref_primary_10_1155_2014_196507
crossref_primary_10_1109_TSP_2016_2569471
crossref_primary_10_3390_rs14153800
crossref_primary_10_1109_TSP_2011_2172435
crossref_primary_10_1109_TSP_2020_3021257
crossref_primary_10_1155_2015_171808
crossref_primary_10_1109_JSEN_2019_2936681
crossref_primary_10_1016_j_sigpro_2024_109585
crossref_primary_10_1007_s00034_016_0301_z
crossref_primary_10_1049_iet_rsn_2018_5239
crossref_primary_10_1016_j_sigpro_2014_07_024
crossref_primary_10_1049_iet_rsn_2015_0307
crossref_primary_10_1007_s11771_017_3646_y
crossref_primary_10_3390_rs16101737
crossref_primary_10_1049_iet_rsn_2017_0152
crossref_primary_10_1109_TSP_2025_3560234
crossref_primary_10_3390_rs14163959
crossref_primary_10_1109_JSEN_2021_3060510
crossref_primary_10_1109_TAES_2019_2906418
crossref_primary_10_1109_ACCESS_2020_3001304
crossref_primary_10_1016_j_dsp_2020_102686
crossref_primary_10_1109_ACCESS_2022_3156638
crossref_primary_10_1109_TAES_2017_2714938
crossref_primary_10_1016_j_sigpro_2013_03_033
crossref_primary_10_1049_iet_spr_2014_0255
crossref_primary_10_1049_iet_rsn_2017_0425
crossref_primary_10_1109_ACCESS_2018_2822046
crossref_primary_10_1109_TAES_2022_3192223
crossref_primary_10_1109_TAES_2014_120523
crossref_primary_10_1016_j_dsp_2016_10_005
crossref_primary_10_1007_s00034_019_01215_w
crossref_primary_10_3390_rs16010096
crossref_primary_10_1109_JSTARS_2021_3090069
crossref_primary_10_1049_iet_spr_2013_0069
crossref_primary_10_1109_JSTARS_2025_3542421
crossref_primary_10_1049_iet_rsn_2016_0256
crossref_primary_10_1109_JSEN_2025_3538793
crossref_primary_10_1109_ACCESS_2019_2911136
crossref_primary_10_1049_iet_rsn_2015_0044
crossref_primary_10_1109_JSEN_2025_3566716
crossref_primary_10_1049_el_2017_1748
crossref_primary_10_1109_TAES_2015_140401
crossref_primary_10_1109_TSP_2013_2258340
crossref_primary_10_1109_ACCESS_2018_2866497
Cites_doi 10.1109/TSP.2009.2018641
10.1109/RADAR.2010.5494384
10.1109/7.625132
10.1109/ICASSP.2010.5496217
10.1109/TAES.2011.5937257
10.1002/0471221104
10.1109/TSP.2009.2014277
10.1109/MAES.2004.1263229
10.1109/TGRS.2010.2051231
10.1109/ICASSP.2010.5496222
10.1109/ICASSP.2010.5496219
10.1109/78.80767
10.1109/TSP.2010.2046897
10.1109/LSP.2007.907995
10.1109/TVT.2009.2038391
10.1109/TSP.2008.919392
10.1109/TSP.2011.2172435
10.1109/7.766945
10.1109/ICASSP.2006.1661143
10.1109/MSP.2006.1593336
10.1109/TSP.2010.2048212
10.1109/78.902111
10.1109/IGARSS.2009.5417664
10.1016/j.sigpro.2009.08.002
10.1109/ISSPA.2010.5605592
10.1109/ICASSP.2009.4960316
10.1109/MSP.2010.936023
10.1109/TAES.2006.248216
10.18637/jss.v033.i01
10.1109/JSTSP.2009.2039173
10.1109/7.303737
10.1109/TIT.2006.885522
10.1109/TAES.1973.309792
ContentType Journal Article
DBID AAYXX
CITATION
7SC
7SP
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2011.2172435
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1941-0476
EndPage 686
ExternalDocumentID 10_1109_TSP_2011_2172435
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
7SC
7SP
8FD
ABAZT
F28
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c276t-88cff1f767c02e463ca615086c642fca0cec1b22cd6a206aedc5febc80f7e89c3
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299434300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Thu Oct 02 13:58:03 EDT 2025
Tue Nov 18 22:20:45 EST 2025
Sat Nov 29 04:10:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c276t-88cff1f767c02e463ca615086c642fca0cec1b22cd6a206aedc5febc80f7e89c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1010898979
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1010898979
crossref_citationtrail_10_1109_TSP_2011_2172435
crossref_primary_10_1109_TSP_2011_2172435
PublicationCentury 2000
PublicationDate 2012-02-00
20120201
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-00
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationYear 2012
References ref35
ref13
(ref43) 0
ref12
ref37
ref15
ref36
ref14
ref31
ref30
chen (ref34) 2009
guerci (ref3) 2003
ref11
ref32
ref10
ref1
ref17
ref38
ref16
ref19
ref18
diniz (ref40) 2002
(ref41) 0
ref23
ref26
van trees (ref42) 2002
haykin (ref39) 2001
ref20
ref22
ref21
zhang (ref24) 2009
chen (ref33) 2009
ward (ref2) 1998
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
sun (ref25) 2010
References_xml – ident: ref13
  doi: 10.1109/TSP.2009.2018641
– start-page: 2/1
  year: 1998
  ident: ref2
  article-title: space-time adaptive processing for airborne radar
  publication-title: IEE Colloquium on Space-Time Adaptive Processing (Ref No 1998/241)
– start-page: 3125
  year: 2009
  ident: ref33
  article-title: Sparse LMS for system identification
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process
– ident: ref26
  doi: 10.1109/RADAR.2010.5494384
– ident: ref7
  doi: 10.1109/7.625132
– ident: ref28
  doi: 10.1109/ICASSP.2010.5496217
– ident: ref15
  doi: 10.1109/TAES.2011.5937257
– year: 2002
  ident: ref42
  publication-title: Optimal Array Processing Part IV of Detection Estimation and Modulation Theory
  doi: 10.1002/0471221104
– ident: ref19
  doi: 10.1109/TSP.2009.2014277
– ident: ref4
  doi: 10.1109/MAES.2004.1263229
– ident: ref21
  doi: 10.1109/TGRS.2010.2051231
– year: 0
  ident: ref43
– ident: ref16
  doi: 10.1109/ICASSP.2010.5496222
– ident: ref27
  doi: 10.1109/ICASSP.2010.5496219
– ident: ref5
  doi: 10.1109/78.80767
– ident: ref31
  doi: 10.1109/TSP.2010.2046897
– ident: ref10
  doi: 10.1109/LSP.2007.907995
– ident: ref11
  doi: 10.1109/TVT.2009.2038391
– ident: ref20
  doi: 10.1109/TSP.2008.919392
– year: 0
  ident: ref41
– year: 2003
  ident: ref3
  publication-title: Space-Time Adaptive Processing for Radar
– ident: ref38
  doi: 10.1109/TSP.2011.2172435
– ident: ref8
  doi: 10.1109/7.766945
– ident: ref22
  doi: 10.1109/ICASSP.2006.1661143
– year: 2002
  ident: ref40
  publication-title: Adaptive Filtering Algorithms and Practical Implementation
– ident: ref17
  doi: 10.1109/MSP.2006.1593336
– year: 2001
  ident: ref39
  publication-title: Adaptive Filter Theory
– ident: ref14
  doi: 10.1109/TSP.2010.2048212
– ident: ref9
  doi: 10.1109/78.902111
– ident: ref23
  doi: 10.1109/IGARSS.2009.5417664
– year: 2010
  ident: ref25
  publication-title: Airborne Radar STAP Using Sparse Recovery of Clutter Spectrum
– ident: ref12
  doi: 10.1016/j.sigpro.2009.08.002
– ident: ref36
  doi: 10.1109/ISSPA.2010.5605592
– ident: ref37
  doi: 10.1109/ICASSP.2009.4960316
– ident: ref30
  doi: 10.1109/MSP.2010.936023
– ident: ref18
  doi: 10.1109/TAES.2006.248216
– year: 2009
  ident: ref24
  publication-title: A Class of Novel STAP Algorithms Using Sparse Recovery Technique
– ident: ref32
  doi: 10.18637/jss.v033.i01
– ident: ref35
  doi: 10.1109/JSTSP.2009.2039173
– year: 2009
  ident: ref34
  publication-title: Regularized Least-Mean-Square Algorithms
– ident: ref6
  doi: 10.1109/7.303737
– ident: ref29
  doi: 10.1109/TIT.2006.885522
– ident: ref1
  doi: 10.1109/TAES.1973.309792
SSID ssj0014496
Score 2.3963177
Snippet In this paper, we propose novel L 1 -regularized space-time adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 674
SubjectTerms Adaptive algorithms
Airborne radar
Algorithms
Architecture
Complexity
Mathematical analysis
Sidelobes
Vectors (mathematics)
Title L_1$-Regularized STAP Algorithms With a Generalized Sidelobe Canceler Architecture for Airborne Radar
URI https://www.proquest.com/docview/1010898979
Volume 60
WOSCitedRecordID wos000299434300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZZt8N2GPtJu19o0MsIXm1HseRjCBs7lBKyDMIuRpbk1JDaxU1L6R_Uv3PvSZbjdGysh11MUBzh5H15etL73vsIORwxlhd5ZDA1KAOmYcOaK20CmUMkpzFEZ9KKTfCTE7FcprPB4NbXwlyteVWJ6-v0_L-aGsbA2Fg6ew9zd5PCALwGo8MVzA7XfzL8cQbOiQVzKzLflDcYUS4ms-FkvaqbcnN6hpRXLGjzLafdLdjuCokXU4TBGpnz_RQDkhEnZQOAgaB0LrVs-lEt7hhRbMIrj9sUBDJDsMzLVSL4FRIdTHtE_fNUolzX9g1thsfyTLpT8Xmtm3JVD6efO86QJR4sAc-r_lkFkj463odzr_CXD8aCL93q48ZSFgUhcyow3ic7jYEWe3HPwSZO06ddqxPXRvv3ZcB2UV18n7kerSjCxVxXlN2O23dWwo6faHdGYZrBDBnOkLUzPCAPYz5OU1cn2GWrGLM6cN238-nwMD26-wy74c_u6m9DmsUz8rTdi9CJw9BzMjDVC_Kk16HyJTGApsM-lihiiW6xRBFLVNIelqjHEvVYon0sUcAS9ViiFkuvyI-vXxbTb0GrzBGomCebQAhVFFHBE67C2LBkpKQVFkgUbGcLJUNlVJTHsdKJjMNEGo2kxlyJsOBGpGr0muxVdWX2CRW8GOfRSEhUzIp5LLTAlokQQuQsT3R0QI78D5aptm09qqessz8Z6YB86j5x7lq2_OXej94GGfhVTJbJytSXF0h9DFFaladv7jHfW_J4i_t3ZG_TXJr35JG62pQXzQeLml9Qt5ci
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L_1%24-Regularized+STAP+Algorithms+With+a+Generalized+Sidelobe+Canceler+Architecture+for+Airborne+Radar&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Yang%2C+Zhaocheng&rft.au=de+Lamare%2C+Rodrigo+C.&rft.au=Li%2C+Xiang&rft.date=2012-02-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=60&rft.issue=2&rft.spage=674&rft.epage=686&rft_id=info:doi/10.1109%2FTSP.2011.2172435&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2011_2172435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon