A Novel Hybrid Attentive Convolutional Autoencoder (HACA) Framework for Enhanced Epileptic Seizure Detection
Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed metho...
Saved in:
| Published in: | International journal of advanced computer science & applications Vol. 16; no. 2 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
| Subjects: | |
| ISSN: | 2158-107X, 2156-5570 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed method integrates signal reconstruction, innovative feature extraction, and attention mechanisms to focus on seizure-critical patterns. Compared to conventional CNN- and RNN-based approaches, HACA demonstrates superior performance by enhancing feature representation and reducing redundant computations. The proposed HACA framework achieved 99.4% accuracy, 99.6%sensitivity, and 99.2% specificity on the CHB-MIT dataset. Moreover, the training time is reduced by 40%, which makes the model more relevant for real-time applications and portable seizure monitoring systems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2158-107X 2156-5570 |
| DOI: | 10.14569/IJACSA.2025.01602127 |