A Novel Hybrid Attentive Convolutional Autoencoder (HACA) Framework for Enhanced Epileptic Seizure Detection

Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed metho...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced computer science & applications Vol. 16; no. 2
Main Authors: Vaddi, Venkata Narayana, Sikha, Madhu Babu, Kodali, Prakash
Format: Journal Article
Language:English
Published: West Yorkshire Science and Information (SAI) Organization Limited 2025
Subjects:
ISSN:2158-107X, 2156-5570
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed method integrates signal reconstruction, innovative feature extraction, and attention mechanisms to focus on seizure-critical patterns. Compared to conventional CNN- and RNN-based approaches, HACA demonstrates superior performance by enhancing feature representation and reducing redundant computations. The proposed HACA framework achieved 99.4% accuracy, 99.6%sensitivity, and 99.2% specificity on the CHB-MIT dataset. Moreover, the training time is reduced by 40%, which makes the model more relevant for real-time applications and portable seizure monitoring systems.
AbstractList Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed method integrates signal reconstruction, innovative feature extraction, and attention mechanisms to focus on seizure-critical patterns. Compared to conventional CNN- and RNN-based approaches, HACA demonstrates superior performance by enhancing feature representation and reducing redundant computations. The proposed HACA framework achieved 99.4% accuracy, 99.6%sensitivity, and 99.2% specificity on the CHB-MIT dataset. Moreover, the training time is reduced by 40%, which makes the model more relevant for real-time applications and portable seizure monitoring systems.
Author Kodali, Prakash
Vaddi, Venkata Narayana
Sikha, Madhu Babu
Author_xml – sequence: 1
  givenname: Venkata Narayana
  surname: Vaddi
  fullname: Vaddi, Venkata Narayana
– sequence: 2
  givenname: Madhu Babu
  surname: Sikha
  fullname: Sikha, Madhu Babu
– sequence: 3
  givenname: Prakash
  surname: Kodali
  fullname: Kodali, Prakash
BookMark eNo1kEFLwzAcxYNMcM59BCHgRQ-dSbqk7bHUzU2GHqbgLaTpP9jZNTVNJ_PT2236Lu8dHg_e7xINalsDQteUTOiUi-R--ZRm63TCCOMTQgVhlEVnaMgoFwHnERkccxxQEr1foHHbbkivMGEiDoeoSvGz3UGFF_vclQVOvYfalzvAma13tup8aWtV4bTzFmptC3D4dpFm6R2eO7WFb-s-sbEOz-oPVWso8KwpK2h8qfEayp_OAX4AD_qwc4XOjapaGP_5CL3NZ6_ZIli9PC6zdBVoFgkfcFIozTVRIk8MTBUXIVFMqZwmxkRFCCqJ4zhSgiRTzbnhEWNg4kKZnCdKF-EI3Zx2G2e_Omi93NjO9TdaGdKYsP4-i_oWP7W0s23rwMjGlVvl9pISeWQrT2zlga38Zxv-Aqpzb5k
ContentType Journal Article
Copyright 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2025.01602127
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2025_01602127
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c276t-50dac5c0a6b9fe4a5630a2aab19ff7d3ea98887a6094c55f5722ef8dafb59acd3
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441767100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Fri Jul 25 21:19:23 EDT 2025
Sat Nov 29 08:10:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-50dac5c0a6b9fe4a5630a2aab19ff7d3ea98887a6094c55f5722ef8dafb59acd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3180200327?pq-origsite=%requestingapplication%
PQID 3180200327
PQPubID 5444811
ParticipantIDs proquest_journals_3180200327
crossref_primary_10_14569_IJACSA_2025_01602127
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2025
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.285688
Snippet Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Accuracy
Classification
Computer science
Convulsions & seizures
Datasets
Deep learning
Electroencephalography
Entropy
Epilepsy
Feature extraction
Neural networks
Neurological diseases
Neurological disorders
Real time
Seizures
Signal processing
Signal reconstruction
Wavelet transforms
Title A Novel Hybrid Attentive Convolutional Autoencoder (HACA) Framework for Enhanced Epileptic Seizure Detection
URI https://www.proquest.com/docview/3180200327
Volume 16
WOSCitedRecordID wos001441767100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELb64MClpTzUQol84AAH041Te9cntIREaaFhRUEKXFZ-jNVK1W5INpHg19ez8YJ66aWXvYzWsjzjeXnmG0LeGOk9d33FtIeMBQttmZZZwoxIDCjpwKm2UfhLOp1ms5kqYsJtGcsqO53YKmpXW8yRnwwQqiyIIE8_zH8znBqFr6txhMY22UWUBBzdUIhf_3IsSTD-skXiDEREMU1nsYknbEqdnJ3nw8s8xIgcoTtlC3Z-1zzd1c6tyRnvP3SzT8hedDZpvpGOA7IF1VOy3w1yoPFePyM3OZ3Wa7ihkz_YwEXzpsEiojXQYV2to3DiQqumRuBLF35-OwlcfEfHXXEXDd4vHVVXbUUBHc2DtgnayNJLuP67WgD9BE1b9VU9Jz_Go-_DCYtjGJjlqWyYSJy2wiZaGuXhVCOimOZamz7me90AtAphdKpliBStEF6knIPPnPZGKG3d4AXZqeoKDgnl0huTeq90358CZJkJDk_Sh4GATHueHZH33emX8w3aRolRCrKr3LCrRHaVHbuOyHHHgDJevmX5__Rf3k9-RR7japuMyjHZaRYreE0e2XVzvVz0yO7H0bT41iPbn1MWvhf8a6-Vr0Apzi6Kn7d7-Nc2
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQXylMUWtgDSHBY6qzj9e4BIStNlJAQIbVIuZl9zIpKlR0SJ6j8qP7G7vhR1Au3HjhbHsk7387LM98Q8tYI77nrKaY9SBY8tGVayIiZJDKghAOn6kHhWTqfy8VCfdshl90sDLZVdjaxNtSutFgjP4qRqixAkKefl78Ybo3Cv6vdCo0GFlO4-B1StvWnyXHQ7zvOR8PTwZi1WwWY5amoWBI5bRMbaWGUh75GgizNtTY9LF-6GLQKWWGqRUh8bJL4JOUcvHTam0Rp6-Ig9w65249livdqmrLrmk4Ugg1RM38GR4qsqemiHRoKh6COJl-ywUkWclKOVKGiJle_6Q5veoPaxY32_rfDeUQetsE0zRr0PyY7UDwhe92iCtrarafkPKPzcgvndHyBA2o0qypsktoCHZTFtr18KGhTlUjs6cLL78cBpR_oqGteoyG6p8PiZ90xQYfLYE2DtbX0BM7-bFZAj6Gqu9qKZ-T7rXzzc7JblAW8IJQLb0zqvdI93weQ0oSALupBnIDUnst98rHTdr5s2ERyzMIQHnkDjxzhkXfw2CcHncLz1ris87_afvnvx2_I_fHp11k-m8ynr8gDlNxUjw7IbrXawCG5Z7fV2Xr1usYxJT9uGxtXvZ0x_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Hybrid+Attentive+Convolutional+Autoencoder+%28HACA%29+Framework+for+Enhanced+Epileptic+Seizure+Detection&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Vaddi%2C+Venkata+Narayana&rft.au=Sikha%2C+Madhu+Babu&rft.au=Kodali%2C+Prakash&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2025.01602127&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_01602127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon