A Novel Hybrid Attentive Convolutional Autoencoder (HACA) Framework for Enhanced Epileptic Seizure Detection
Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed metho...
Uloženo v:
| Vydáno v: | International journal of advanced computer science & applications Ročník 16; číslo 2 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
| Témata: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed method integrates signal reconstruction, innovative feature extraction, and attention mechanisms to focus on seizure-critical patterns. Compared to conventional CNN- and RNN-based approaches, HACA demonstrates superior performance by enhancing feature representation and reducing redundant computations. The proposed HACA framework achieved 99.4% accuracy, 99.6%sensitivity, and 99.2% specificity on the CHB-MIT dataset. Moreover, the training time is reduced by 40%, which makes the model more relevant for real-time applications and portable seizure monitoring systems. |
|---|---|
| AbstractList | Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive Convolutional Autoen-coder (HACA) framework designed to address challenges in EEG signal processing for seizure detection. The proposed method integrates signal reconstruction, innovative feature extraction, and attention mechanisms to focus on seizure-critical patterns. Compared to conventional CNN- and RNN-based approaches, HACA demonstrates superior performance by enhancing feature representation and reducing redundant computations. The proposed HACA framework achieved 99.4% accuracy, 99.6%sensitivity, and 99.2% specificity on the CHB-MIT dataset. Moreover, the training time is reduced by 40%, which makes the model more relevant for real-time applications and portable seizure monitoring systems. |
| Author | Kodali, Prakash Vaddi, Venkata Narayana Sikha, Madhu Babu |
| Author_xml | – sequence: 1 givenname: Venkata Narayana surname: Vaddi fullname: Vaddi, Venkata Narayana – sequence: 2 givenname: Madhu Babu surname: Sikha fullname: Sikha, Madhu Babu – sequence: 3 givenname: Prakash surname: Kodali fullname: Kodali, Prakash |
| BookMark | eNo1kEFLwzAcxYNMcM59BCHgRQ-dSbqk7bHUzU2GHqbgLaTpP9jZNTVNJ_PT2236Lu8dHg_e7xINalsDQteUTOiUi-R--ZRm63TCCOMTQgVhlEVnaMgoFwHnERkccxxQEr1foHHbbkivMGEiDoeoSvGz3UGFF_vclQVOvYfalzvAma13tup8aWtV4bTzFmptC3D4dpFm6R2eO7WFb-s-sbEOz-oPVWso8KwpK2h8qfEayp_OAX4AD_qwc4XOjapaGP_5CL3NZ6_ZIli9PC6zdBVoFgkfcFIozTVRIk8MTBUXIVFMqZwmxkRFCCqJ4zhSgiRTzbnhEWNg4kKZnCdKF-EI3Zx2G2e_Omi93NjO9TdaGdKYsP4-i_oWP7W0s23rwMjGlVvl9pISeWQrT2zlga38Zxv-Aqpzb5k |
| ContentType | Journal Article |
| Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2025.01602127 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2025_01602127 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c276t-50dac5c0a6b9fe4a5630a2aab19ff7d3ea98887a6094c55f5722ef8dafb59acd3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441767100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Fri Jul 25 21:19:23 EDT 2025 Sat Nov 29 08:10:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c276t-50dac5c0a6b9fe4a5630a2aab19ff7d3ea98887a6094c55f5722ef8dafb59acd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3180200327?pq-origsite=%requestingapplication% |
| PQID | 3180200327 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_3180200327 crossref_primary_10_14569_IJACSA_2025_01602127 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2025 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.285688 |
| Snippet | Epilepsy, a prevalent neurological disorder, requires accurate and efficient seizure detection for timely intervention. This study presents a Hybrid Attentive... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Accuracy Classification Computer science Convulsions & seizures Datasets Deep learning Electroencephalography Entropy Epilepsy Feature extraction Neural networks Neurological diseases Neurological disorders Real time Seizures Signal processing Signal reconstruction Wavelet transforms |
| Title | A Novel Hybrid Attentive Convolutional Autoencoder (HACA) Framework for Enhanced Epileptic Seizure Detection |
| URI | https://www.proquest.com/docview/3180200327 |
| Volume | 16 |
| WOSCitedRecordID | wos001441767100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOnCB5SVeW_mwh92DITh13JxQttuq7IoSLSAVLpHt2AIJJaVNK8Gvx5M6IC572Usuo1iRZzyvjL8P4Bu3kVIhs1RHgaBtaQx1ebKlwgbaKhty1VE12YQYDjujUZz6htvUj1U2PrF21HmpsUd-GiJUmTNBJs7HzxRZo_DvqqfQWIZVRElA6oaU37_3WAIX_KMaidMJEcVUjPwlHpc2xKcXv5PudeJqRIbQnVENdv45PH32znXI6W_-78d-gQ2fbJJkYR1bsGSKbdhsiByIP9c78JSQYTk3T2Twghe4SFJVOEQ0N6RbFnNvnLjQrCoR-DJ3L38fOC3-IP1muIu47Jf0iod6ooD0xs7bOG-kybV5fJ1NDPllqnrqq9iF237vpjugnoaBaiaiivIgl5rrQEYqtqYtEVFMMinVGfZ789DI2JXRQkauUtScWy4YM7aTS6t4LHUe7sFKURZmH0gnCg3WOBLzHilkjNg9mgUqPGu7Er99ACfN7mfjBdpGhlUKqitbqCtDdWWNug7guFFA5g_fNPvY_cN_i49gHVdbdFSOYaWazMxXWNPz6nE6acHqz94w_duC5T-Cuuclu2rV9uUk6cVlevcGaK3V8A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUKm98OhDDeWxB5Dawxazfqx9QMgKiRICUSVAys3srndVJGSHxAmiP4rfyI4fIC7cOHC2PNJ6vp2XZ74B2PVNIKXLDFWBw6kntKY2TjaUG0cZaVxfhrJcNsFHo3A8jv4uwUMzC4NtlY1NLA11miuske-7SFVmIcj40eSW4tYo_LvarNCoYDHU93c2ZZsdDo6tfvcY63UvOn1abxWgivGgoL6TCuUrRwQyMtoTSJAlmBDyAMuXqatFZLNCLgKb-CjfNz5nTJswFUb6kVCpa-V-gGXPDTneqyGnTzUdxwYbQcn8aR0psqbycT00ZMOUaH9wEnfOY5uTMqQKDUpy9Zfu8KU3KF1cb_W9fZw1WKmDaRJX6F-HJZ19gdVmUQWp7dZXuInJKF_oG9K_xwE1EhcFNkktNOnk2aK-fChoXuRI7Jnal3_1LUp_k17TvEZsdE-62b-yY4J0J9aaWmuryLm-_j-fanKsi7KrLfsGl29y5u_QyvJM_wASBq7GHE5gXCe4iJCbSDFHugeelsxrw59G28mkYhNJMAtDeCQVPBKER9LAow2bjcKT2rjMkmdtb7z-eAc-9S_OTpPTwWj4Ez6j5Kp6tAmtYjrXW_BRLYrr2XS7xDGBq7fGxiM3ADC4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Hybrid+Attentive+Convolutional+Autoencoder+%28HACA%29+Framework+for+Enhanced+Epileptic+Seizure+Detection&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Vaddi%2C+Venkata+Narayana&rft.au=Sikha%2C+Madhu+Babu&rft.au=Kodali%2C+Prakash&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2025.01602127&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_01602127 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |