A New Decoding Method for Reed-Solomon Codes Based on FFT and Modular Approach
Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch-Berlekamp (WB) key equation. By taking the MA as the key equation solver, we pro...
Saved in:
| Published in: | IEEE transactions on communications Vol. 70; no. 12; p. 1 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0090-6778, 1558-0857 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch-Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For ( n, k ) RS codes, where n is the code length and k is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity O ( n log( n-k )+( n-k ) log 2 ( n-k )) and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the (4096,3584) RS code defined over F 2 12 , the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation. |
|---|---|
| AbstractList | Decoding algorithms for Reed–Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch–Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For [Formula Omitted] RS codes, where [Formula Omitted] is the code length and [Formula Omitted] is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity [Formula Omitted] and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the (4096, 3584) RS code defined over [Formula Omitted], the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation. Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch-Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For ( n, k ) RS codes, where n is the code length and k is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity O ( n log( n-k )+( n-k ) log 2 ( n-k )) and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the (4096,3584) RS code defined over F 2 12 , the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation. |
| Author | Tang, Nianqi Han, Yunghsiang S. |
| Author_xml | – sequence: 1 givenname: Nianqi surname: Tang fullname: Tang, Nianqi organization: Huawei Technologies Co., Ltd, China – sequence: 2 givenname: Yunghsiang S. orcidid: 0000-0002-3592-1681 surname: Han fullname: Han, Yunghsiang S. organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, China |
| BookMark | eNp9kFFLwzAUhYMouE3_gL4EfO68SZqmeZzVqbBuoPO5pM2t6-iamXaI_97ODR988Oly4XznwDckp41rkJArBmPGQN8uk0WajjlwPhacSa3jEzJgUsYBxFKdkgGAhiBSKj4nw7ZdA0AIQgzIfELn-EnvsXC2at5pit3KWVo6T18QbfDqardxDU2cxZbemRYt7d_pdElNY2nq7K42nk62W-9MsbogZ6WpW7w83hF5mz4sk6dgtnh8TiazoOAq6gIhULO81Dy3kSogtKrIZRxBjsKUgvOwNCBkDlhClIvCKGSMldKEYEMrw1yMyM2ht5_92GHbZWu3800_mXElQy2jiKs-FR9ShXdt67HMiqozXeWazpuqzhhke3vZj71sby872utR_gfd-mpj_Nf_0PUBqhDxF9CaSw5afANzg3uG |
| CODEN | IECMBT |
| CitedBy_id | crossref_primary_10_1515_nleng_2024_0075 crossref_primary_10_3390_math13172792 crossref_primary_10_1109_LCOMM_2024_3358055 crossref_primary_10_1109_TIT_2025_3542812 crossref_primary_10_1109_ACCESS_2023_3288069 crossref_primary_10_1109_TCOMM_2022_3215998 crossref_primary_10_1109_TIT_2025_3539222 |
| Cites_doi | 10.1109/LSP.2019.2929408 10.1109/TIT.2010.2079016 10.1109/TIT.2016.2608892 10.1109/18.782097 10.1109/TCOMM.2007.910595 10.1137/0108018 10.1109/TIT.2016.2600417 10.1016/S0024-3795(01)00509-2 10.1002/0471739219 10.1109/18.391235 10.1016/j.jsc.2010.03.010 10.1016/j.jsc.2008.01.002 10.1109/TIT.2011.2165524 10.1109/TCOMM.2022.3215998 10.1109/TIT.2005.850097 10.1109/TCOMM.2002.805269 10.1109/18.165455 10.1017/CBO9780511800467 10.1109/TIT.2022.3140678 10.1109/92.953498 10.1109/FOCS.2014.41 10.1109/TIT.2015.2416068 10.1109/18.412677 10.1109/TCOMM.2011.060911.090145 10.1109/LCOMM.2020.2965453 10.1109/TSP.2012.2192435 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCOMM.2022.3215998 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0857 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TCOMM_2022_3215998 9925209 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYXX CITATION 7SP 8FD AARMG ABAZT L7M |
| ID | FETCH-LOGICAL-c276t-33e91bf92bd67c04d7cb5860be3af3224fa035b0ef06b3ca7e111f5a40d4d54b3 |
| IEDL.DBID | RIE |
| ISSN | 0090-6778 |
| IngestDate | Mon Jun 30 10:08:15 EDT 2025 Tue Nov 18 22:23:58 EST 2025 Sat Nov 29 04:08:24 EST 2025 Tue Nov 25 14:44:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c276t-33e91bf92bd67c04d7cb5860be3af3224fa035b0ef06b3ca7e111f5a40d4d54b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3592-1681 |
| PQID | 2754956627 |
| PQPubID | 85472 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCOMM_2022_3215998 crossref_primary_10_1109_TCOMM_2022_3215998 ieee_primary_9925209 proquest_journals_2754956627 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on communications |
| PublicationTitleAbbrev | TCOMM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 welch (ref5) 1986 ref24 ref23 ref26 ref25 ref20 herstein (ref22) 1975 ref21 ref28 ref27 ref29 ref8 ref7 ref9 lin (ref4) 2004 ref3 ref6 |
| References_xml | – ident: ref10 doi: 10.1109/LSP.2019.2929408 – ident: ref11 doi: 10.1109/TIT.2010.2079016 – ident: ref29 doi: 10.1109/TIT.2016.2608892 – ident: ref13 doi: 10.1109/18.782097 – ident: ref7 doi: 10.1109/TCOMM.2007.910595 – ident: ref1 doi: 10.1137/0108018 – ident: ref12 doi: 10.1109/TIT.2016.2600417 – ident: ref14 doi: 10.1016/S0024-3795(01)00509-2 – ident: ref2 doi: 10.1002/0471739219 – ident: ref23 doi: 10.1109/18.391235 – year: 2004 ident: ref4 publication-title: Error Control Coding – year: 1975 ident: ref22 publication-title: Topics in Algebra – ident: ref17 doi: 10.1016/j.jsc.2010.03.010 – year: 1986 ident: ref5 publication-title: Error correction for algebraic block codes – ident: ref15 doi: 10.1016/j.jsc.2008.01.002 – ident: ref19 doi: 10.1109/TIT.2011.2165524 – ident: ref27 doi: 10.1109/TCOMM.2022.3215998 – ident: ref16 doi: 10.1109/TIT.2005.850097 – ident: ref6 doi: 10.1109/TCOMM.2002.805269 – ident: ref21 doi: 10.1109/18.165455 – ident: ref3 doi: 10.1017/CBO9780511800467 – ident: ref20 doi: 10.1109/TIT.2022.3140678 – ident: ref28 doi: 10.1109/92.953498 – ident: ref25 doi: 10.1109/FOCS.2014.41 – ident: ref18 doi: 10.1109/TIT.2015.2416068 – ident: ref24 doi: 10.1109/18.412677 – ident: ref9 doi: 10.1109/TCOMM.2011.060911.090145 – ident: ref26 doi: 10.1109/LCOMM.2020.2965453 – ident: ref8 doi: 10.1109/TSP.2012.2192435 |
| SSID | ssj0004033 |
| Score | 2.4982376 |
| Snippet | Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called... Decoding algorithms for Reed–Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Additives Algorithms Codes Complexity Computational complexity Decoding decoding algorithm fast Fourier transform Formulas (mathematics) Fourier transforms Kernel Mathematical models Modular approach Reed–Solomon codes |
| Title | A New Decoding Method for Reed-Solomon Codes Based on FFT and Modular Approach |
| URI | https://ieeexplore.ieee.org/document/9925209 https://www.proquest.com/docview/2754956627 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0857 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004033 issn: 0090-6778 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiUHb9otbdKmOc7p8NIpOmG3kk8QZJN9-PebZN1UFMFbC0kp75e8X1773vsBXGBthcVaRFpxFdGYkUgqjaPU8Y2ggiWa6CA2wQaDfDTiDzW4WtfCGGNC8plp-8vwL19P1MJ_KutwnvisjQ3YYCxb1mp91kBiUnWc9OnsLF8VyGDeGfbui8KFgknSJo7hXIDxjYSCqsoPVxz4pb_7vzfbg53qHIm6S-D3oWbGB7D9pbtgAwZd5FwYunEBpicoVASxaOROqejRcVb05PyeW4SoN9Fmhq4dnWnkbvv9IRJjjYqJ9imqqFt1HT-E5_7tsHcXVfIJkUpYNo8IMTyWlidSZ0xhqpmSaZ5haYiwbh9TKzBJJTYWZ5IowYzzezYVFGuqUyrJEdTHk7E5BuTQpETGuXWuk8occ5tlucWS5VhoImkT4pU9S1X1FvcSF69liDEwLwMGpcegrDBowuV6ztuys8afoxve6uuRlcGb0FrBVlabb1YmLPVhX5awk99nncKWf_YyK6UF9fl0Yc5gU73PX2bT87CuPgAXgcjW |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDt50bZpkN5tjrRZFt4pW8LbkCYK0Yqu_3yTdVkURvO1Cwi7zJfNldmfmAzjExkmHjUyMFjphDU4TpQ1OUs83kklODDVRbIJ3Ovnjo7idguNJLYy1Niaf2ZNwGf_lm75-C5_K6kKQkLUxDbMpYwSPqrU-qyAxrXpOhoR2no9LZLCod1s3ReGDQUJOqOc4H2J8o6Goq_LDGUeGaS__791WYKk6SaLmCPpVmLK9NVj80l9wHTpN5J0YOvMhZqAoVES5aOTPqejOs1Zy7z2fX4ao1Td2gE49oRnkb9vtLpI9g4q-CUmqqFn1Hd-Ah_Z5t3WRVAIKiSY8GyaUWtFQThBlMq4xM1yrNM-wslQ6v5OZk5imCluHM0W15NZ7PpdKhg0zKVN0E2Z6_Z7dAuTxZFQ1cuedJ1M5Fi7LcocVz7E0VLEaNMb2LHXVXTyIXDyXMcrAoowYlAGDssKgBkeTOS-j3hp_jl4PVp-MrAxeg90xbGW1_QYl4WkI_DLCt3-fdQDzF93iury-7FztwEJ4zihHZRdmhq9vdg_m9PvwafC6H9fYB7fRzB0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Decoding+Method+for+Reed%E2%80%93Solomon+Codes+Based+on+FFT+and+Modular+Approach&rft.jtitle=IEEE+transactions+on+communications&rft.au=Tang%2C+Nianqi&rft.au=Han%2C+Yunghsiang+S.&rft.date=2022-12-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=70&rft.issue=12&rft.spage=7790&rft.epage=7801&rft_id=info:doi/10.1109%2FTCOMM.2022.3215998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2022_3215998 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |