A New Decoding Method for Reed-Solomon Codes Based on FFT and Modular Approach

Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch-Berlekamp (WB) key equation. By taking the MA as the key equation solver, we pro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 70; no. 12; p. 1
Main Authors: Tang, Nianqi, Han, Yunghsiang S.
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch-Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For ( n, k ) RS codes, where n is the code length and k is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity O ( n log( n-k )+( n-k ) log 2 ( n-k )) and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the (4096,3584) RS code defined over F 2 12 , the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation.
AbstractList Decoding algorithms for Reed–Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch–Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For [Formula Omitted] RS codes, where [Formula Omitted] is the code length and [Formula Omitted] is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity [Formula Omitted] and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the (4096, 3584) RS code defined over [Formula Omitted], the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation.
Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called the modular approach (MA), is devised for solving the Welch-Berlekamp (WB) key equation. By taking the MA as the key equation solver, we propose a new decoding algorithm for systematic RS codes. For ( n, k ) RS codes, where n is the code length and k is the code dimension, the proposed decoding algorithm has both the best asymptotic computational complexity O ( n log( n-k )+( n-k ) log 2 ( n-k )) and the smallest constant factor achieved to date. By comparing the number of field operations required, we show that when decoding practical RS codes, the new algorithm is significantly superior to the existing methods in terms of computational complexity. When decoding the (4096,3584) RS code defined over F 2 12 , the new algorithm is 10 times faster than a conventional syndrome-based method. Furthermore, the new algorithm has a regular architecture and is thus suitable for hardware implementation.
Author Tang, Nianqi
Han, Yunghsiang S.
Author_xml – sequence: 1
  givenname: Nianqi
  surname: Tang
  fullname: Tang, Nianqi
  organization: Huawei Technologies Co., Ltd, China
– sequence: 2
  givenname: Yunghsiang S.
  orcidid: 0000-0002-3592-1681
  surname: Han
  fullname: Han, Yunghsiang S.
  organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, China
BookMark eNp9kFFLwzAUhYMouE3_gL4EfO68SZqmeZzVqbBuoPO5pM2t6-iamXaI_97ODR988Oly4XznwDckp41rkJArBmPGQN8uk0WajjlwPhacSa3jEzJgUsYBxFKdkgGAhiBSKj4nw7ZdA0AIQgzIfELn-EnvsXC2at5pit3KWVo6T18QbfDqardxDU2cxZbemRYt7d_pdElNY2nq7K42nk62W-9MsbogZ6WpW7w83hF5mz4sk6dgtnh8TiazoOAq6gIhULO81Dy3kSogtKrIZRxBjsKUgvOwNCBkDlhClIvCKGSMldKEYEMrw1yMyM2ht5_92GHbZWu3800_mXElQy2jiKs-FR9ShXdt67HMiqozXeWazpuqzhhke3vZj71sby872utR_gfd-mpj_Nf_0PUBqhDxF9CaSw5afANzg3uG
CODEN IECMBT
CitedBy_id crossref_primary_10_1515_nleng_2024_0075
crossref_primary_10_3390_math13172792
crossref_primary_10_1109_LCOMM_2024_3358055
crossref_primary_10_1109_TIT_2025_3542812
crossref_primary_10_1109_ACCESS_2023_3288069
crossref_primary_10_1109_TCOMM_2022_3215998
crossref_primary_10_1109_TIT_2025_3539222
Cites_doi 10.1109/LSP.2019.2929408
10.1109/TIT.2010.2079016
10.1109/TIT.2016.2608892
10.1109/18.782097
10.1109/TCOMM.2007.910595
10.1137/0108018
10.1109/TIT.2016.2600417
10.1016/S0024-3795(01)00509-2
10.1002/0471739219
10.1109/18.391235
10.1016/j.jsc.2010.03.010
10.1016/j.jsc.2008.01.002
10.1109/TIT.2011.2165524
10.1109/TCOMM.2022.3215998
10.1109/TIT.2005.850097
10.1109/TCOMM.2002.805269
10.1109/18.165455
10.1017/CBO9780511800467
10.1109/TIT.2022.3140678
10.1109/92.953498
10.1109/FOCS.2014.41
10.1109/TIT.2015.2416068
10.1109/18.412677
10.1109/TCOMM.2011.060911.090145
10.1109/LCOMM.2020.2965453
10.1109/TSP.2012.2192435
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2022.3215998
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 1
ExternalDocumentID 10_1109_TCOMM_2022_3215998
9925209
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c276t-33e91bf92bd67c04d7cb5860be3af3224fa035b0ef06b3ca7e111f5a40d4d54b3
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Mon Jun 30 10:08:15 EDT 2025
Tue Nov 18 22:23:58 EST 2025
Sat Nov 29 04:08:24 EST 2025
Tue Nov 25 14:44:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-33e91bf92bd67c04d7cb5860be3af3224fa035b0ef06b3ca7e111f5a40d4d54b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3592-1681
PQID 2754956627
PQPubID 85472
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TCOMM_2022_3215998
crossref_primary_10_1109_TCOMM_2022_3215998
ieee_primary_9925209
proquest_journals_2754956627
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
welch (ref5) 1986
ref24
ref23
ref26
ref25
ref20
herstein (ref22) 1975
ref21
ref28
ref27
ref29
ref8
ref7
ref9
lin (ref4) 2004
ref3
ref6
References_xml – ident: ref10
  doi: 10.1109/LSP.2019.2929408
– ident: ref11
  doi: 10.1109/TIT.2010.2079016
– ident: ref29
  doi: 10.1109/TIT.2016.2608892
– ident: ref13
  doi: 10.1109/18.782097
– ident: ref7
  doi: 10.1109/TCOMM.2007.910595
– ident: ref1
  doi: 10.1137/0108018
– ident: ref12
  doi: 10.1109/TIT.2016.2600417
– ident: ref14
  doi: 10.1016/S0024-3795(01)00509-2
– ident: ref2
  doi: 10.1002/0471739219
– ident: ref23
  doi: 10.1109/18.391235
– year: 2004
  ident: ref4
  publication-title: Error Control Coding
– year: 1975
  ident: ref22
  publication-title: Topics in Algebra
– ident: ref17
  doi: 10.1016/j.jsc.2010.03.010
– year: 1986
  ident: ref5
  publication-title: Error correction for algebraic block codes
– ident: ref15
  doi: 10.1016/j.jsc.2008.01.002
– ident: ref19
  doi: 10.1109/TIT.2011.2165524
– ident: ref27
  doi: 10.1109/TCOMM.2022.3215998
– ident: ref16
  doi: 10.1109/TIT.2005.850097
– ident: ref6
  doi: 10.1109/TCOMM.2002.805269
– ident: ref21
  doi: 10.1109/18.165455
– ident: ref3
  doi: 10.1017/CBO9780511800467
– ident: ref20
  doi: 10.1109/TIT.2022.3140678
– ident: ref28
  doi: 10.1109/92.953498
– ident: ref25
  doi: 10.1109/FOCS.2014.41
– ident: ref18
  doi: 10.1109/TIT.2015.2416068
– ident: ref24
  doi: 10.1109/18.412677
– ident: ref9
  doi: 10.1109/TCOMM.2011.060911.090145
– ident: ref26
  doi: 10.1109/LCOMM.2020.2965453
– ident: ref8
  doi: 10.1109/TSP.2012.2192435
SSID ssj0004033
Score 2.4982376
Snippet Decoding algorithms for Reed-Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called...
Decoding algorithms for Reed–Solomon (RS) codes are of great interest for both practical and theoretical reasons. In this paper, an efficient algorithm, called...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Additives
Algorithms
Codes
Complexity
Computational complexity
Decoding
decoding algorithm
fast Fourier transform
Formulas (mathematics)
Fourier transforms
Kernel
Mathematical models
Modular approach
Reed–Solomon codes
Title A New Decoding Method for Reed-Solomon Codes Based on FFT and Modular Approach
URI https://ieeexplore.ieee.org/document/9925209
https://www.proquest.com/docview/2754956627
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0857
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004033
  issn: 0090-6778
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOiUHb9otbdKmOc7p8NIpOmG3kk8QZJN9-PebZN1UFMFbC0kp75e8X1773vsBXGBthcVaRFpxFdGYkUgqjaPU8Y2ggiWa6CA2wQaDfDTiDzW4WtfCGGNC8plp-8vwL19P1MJ_KutwnvisjQ3YYCxb1mp91kBiUnWc9OnsLF8VyGDeGfbui8KFgknSJo7hXIDxjYSCqsoPVxz4pb_7vzfbg53qHIm6S-D3oWbGB7D9pbtgAwZd5FwYunEBpicoVASxaOROqejRcVb05PyeW4SoN9Fmhq4dnWnkbvv9IRJjjYqJ9imqqFt1HT-E5_7tsHcXVfIJkUpYNo8IMTyWlidSZ0xhqpmSaZ5haYiwbh9TKzBJJTYWZ5IowYzzezYVFGuqUyrJEdTHk7E5BuTQpETGuXWuk8occ5tlucWS5VhoImkT4pU9S1X1FvcSF69liDEwLwMGpcegrDBowuV6ztuys8afoxve6uuRlcGb0FrBVlabb1YmLPVhX5awk99nncKWf_YyK6UF9fl0Yc5gU73PX2bT87CuPgAXgcjW
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDt50bZpkN5tjrRZFt4pW8LbkCYK0Yqu_3yTdVkURvO1Cwi7zJfNldmfmAzjExkmHjUyMFjphDU4TpQ1OUs83kklODDVRbIJ3Ovnjo7idguNJLYy1Niaf2ZNwGf_lm75-C5_K6kKQkLUxDbMpYwSPqrU-qyAxrXpOhoR2no9LZLCod1s3ReGDQUJOqOc4H2J8o6Goq_LDGUeGaS__791WYKk6SaLmCPpVmLK9NVj80l9wHTpN5J0YOvMhZqAoVES5aOTPqejOs1Zy7z2fX4ao1Td2gE49oRnkb9vtLpI9g4q-CUmqqFn1Hd-Ah_Z5t3WRVAIKiSY8GyaUWtFQThBlMq4xM1yrNM-wslQ6v5OZk5imCluHM0W15NZ7PpdKhg0zKVN0E2Z6_Z7dAuTxZFQ1cuedJ1M5Fi7LcocVz7E0VLEaNMb2LHXVXTyIXDyXMcrAoowYlAGDssKgBkeTOS-j3hp_jl4PVp-MrAxeg90xbGW1_QYl4WkI_DLCt3-fdQDzF93iury-7FztwEJ4zihHZRdmhq9vdg_m9PvwafC6H9fYB7fRzB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Decoding+Method+for+Reed%E2%80%93Solomon+Codes+Based+on+FFT+and+Modular+Approach&rft.jtitle=IEEE+transactions+on+communications&rft.au=Tang%2C+Nianqi&rft.au=Han%2C+Yunghsiang+S.&rft.date=2022-12-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=70&rft.issue=12&rft.spage=7790&rft.epage=7801&rft_id=info:doi/10.1109%2FTCOMM.2022.3215998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2022_3215998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon