Investigating Cooling Load Estimation via Hybrid Models Based on the Radial Basis Function

To advance energy conservation in cooling systems within buildings, a pivotal technology known as cooling load prediction is essential. Traditional industry computational models typically employ forward or inverse modeling techniques, but these methods often demand extensive computational resources...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced computer science & applications Ročník 15; číslo 4
Hlavní autoři: Zhang, Sirui, Zheng, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: West Yorkshire Science and Information (SAI) Organization Limited 2024
Témata:
ISSN:2158-107X, 2156-5570
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To advance energy conservation in cooling systems within buildings, a pivotal technology known as cooling load prediction is essential. Traditional industry computational models typically employ forward or inverse modeling techniques, but these methods often demand extensive computational resources and involve lengthy procedures. However, artificial intelligence (AI) surpasses these approaches, with its models exhibiting the capability to autonomously discern intricate patterns, adapt dynamically, and enhance their performance as data volumes increase. AI models excel in forecasting cooling loads, accounting for various factors like weather conditions, building materials, and occupancy. This results in agile and responsive predictions, ultimately leading to heightened energy efficiency. The dataset of this study, which comprised 768 samples, was derived from previous studies. The primary objective of this study is to introduce a novel framework for the prediction of Cooling Load via integrating the Radial Basis Function (RBF) with 2 innovative optimization algorithms, specifically the Dynamic Arithmetic Optimization Algorithm (DAO) and the Golden Eagle Optimization Algorithm (GEO). The predictive outcomes indicate that the RBDA prediction model outperforms RBF in cooling load predictions, with RMSE=0.792, approximately half as much as those of RBF. Furthermore, the RBDA model's performance, especially in the training phase, confirmed the optimal value of R2=0.993.
AbstractList To advance energy conservation in cooling systems within buildings, a pivotal technology known as cooling load prediction is essential. Traditional industry computational models typically employ forward or inverse modeling techniques, but these methods often demand extensive computational resources and involve lengthy procedures. However, artificial intelligence (AI) surpasses these approaches, with its models exhibiting the capability to autonomously discern intricate patterns, adapt dynamically, and enhance their performance as data volumes increase. AI models excel in forecasting cooling loads, accounting for various factors like weather conditions, building materials, and occupancy. This results in agile and responsive predictions, ultimately leading to heightened energy efficiency. The dataset of this study, which comprised 768 samples, was derived from previous studies. The primary objective of this study is to introduce a novel framework for the prediction of Cooling Load via integrating the Radial Basis Function (RBF) with 2 innovative optimization algorithms, specifically the Dynamic Arithmetic Optimization Algorithm (DAO) and the Golden Eagle Optimization Algorithm (GEO). The predictive outcomes indicate that the RBDA prediction model outperforms RBF in cooling load predictions, with RMSE=0.792, approximately half as much as those of RBF. Furthermore, the RBDA model's performance, especially in the training phase, confirmed the optimal value of R2=0.993.
Author Zhang, Sirui
Zheng, Hao
Author_xml – sequence: 1
  givenname: Sirui
  surname: Zhang
  fullname: Zhang, Sirui
– sequence: 2
  givenname: Hao
  surname: Zheng
  fullname: Zheng, Hao
BookMark eNo1UNlqwzAQFCWFpmk-oSDos1Mdlmw_piZXSSn0gNIXIetIHVwptZxA_r5y0u7LLLOzu8xcg4HzzgBwi9EEp4wX96vHafk6nRBE0gnCDKUYkQswJJjxhLEMDU59nmCUfVyBcQhbFIsWhOd0CD5X7mBCV29kV7sNLL1velx7qeEs8t-R9w4eagmXx6qtNXzy2jQBPshgNIyj7svAF6lr2fRcHeB871S_dAMurWyCGf_hCLzPZ2_lMlk_L1bldJ0okvEuwQUx2DLOckqyHNlKp6mSiiOLsU4tr5Q0klYFlkVVKM60ZFJTbCpOCmtyQ0fg7nx31_qffTQjtn7fuvhSUMQRTvOMsahiZ5VqfQitsWLXRnftUWAkTkmKc5KiT1L8J0l_AdqbaMo
ContentType Journal Article
Copyright 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2024.01504102
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2024_01504102
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c276t-192e1f565832780fbd44cac60f11d4f6bcaea3b91a9b9c65da5ad31eb629fe8e3
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001317491800100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Fri Jul 25 07:52:27 EDT 2025
Sat Nov 29 02:26:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-192e1f565832780fbd44cac60f11d4f6bcaea3b91a9b9c65da5ad31eb629fe8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3060148755?pq-origsite=%requestingapplication%
PQID 3060148755
PQPubID 5444811
ParticipantIDs proquest_journals_3060148755
crossref_primary_10_14569_IJACSA_2024_01504102
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2024
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.242376
Snippet To advance energy conservation in cooling systems within buildings, a pivotal technology known as cooling load prediction is essential. Traditional industry...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Algorithms
Artificial intelligence
Building materials
Cooling
Cooling loads
Cooling systems
Optimization
Optimization algorithms
Prediction models
Predictions
Radial basis function
Weather
Title Investigating Cooling Load Estimation via Hybrid Models Based on the Radial Basis Function
URI https://www.proquest.com/docview/3060148755
Volume 15
WOSCitedRecordID wos001317491800100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB2V0AOXQimotBDtoVdDbK-99gmFKBG0ECxopcDF2rVno0gooThE6r9nxl7zceHSi2XtyJY1s7vzdtb7HsAPGWgMrB95RsWGSzfoGcoankVUvQQjgrg1Zf65Go-TySTNXMGtcr9VtnNiPVGXi4Jr5EchE4cwuo6O7_96rBrFu6tOQmMN1pklgaUbsuj2ucbSo-Qf10ycZGQWUzVxh3gINqRHZz_7g-s-rREDecgLf-m74spzeno7O9cpZ7T5vx-7BZ8c2BT9pnd8hg8434bNVshBuHH9BW5fsW3Mp2KwYCWfqThf6FIMqb053ihWMy1O__ERL8ESaneVOKEcWAoyEYwUV0xzcMdts0qMKF_yQzvwZzT8PTj1nOiCVwQqXnqE-NC3BPNoqKukZ00pZaGLuGd9v5Q2NoVGHZrU16lJizgqdaTL0EcTB6nFBMNd6MwXc_wKQqLVBBAUahNLNEYrTAzdM-eYDJXdg8PW1_l9w62R85qEg5M3wck5OHkbnD3Yb92du6FW5S--_va--Tts8Nua-sk-dJYPj3gAH4vVclY9dGH9ZDjOrrqw9kt5dL0ILrt1byJLdnaR3TwBDV7Psw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xkuBSHi2C8uge4GiI7bXXPiAUAlHShKhqqRT1YnbtWRQJJRSnIP4Uv5EZP4BeuHHgZu3KK9nzeebbWc83AHvS0-hZN3CMCg2nbtAxFDUci6gaEQZEcQvJ_L4aDKLhMP4xA491LQz_Vln7xMJRZ5OUc-SHPguHMLsOjm_-Otw1ik9X6xYaJSx6-HBPW7b8qHtK9t33vPbZRavjVF0FnNRT4dQhSoOuJR5DWFZRw5pMylSnYcO6biZtaFKN2jexq2MTp2GQ6UBnvosm9GKLEfq07izMSz9S_F31lPOc02kQ2QgL5U8KpKyaqoZV0RDRlPiw-73Z-tWkPaknDzjRIN0qmfMcDv-PBkWIay9_tJezAp8qMi2aJfpXYQbHa7BcN6oQld_6DH9eqYmMr0Rrwp2KrkR_ojNxRuNl-aa4G2nReeASNsEt4q5zcUIxPhM0RTRZ_GQZh2seG-WiTXyAb_oCv9_lCddhbjwZ4wYIiVYTAVKoTSjRGK0wMnTNmmrSV3YTDmrbJjeldkjCey4GQ1KCIWEwJDUYNmG7Nm9SuZI8ebHt17env8Fi5-K8n_S7g94WLPHKZa5oG-amt_9wBxbSu-kov90tUCvg8r2R8AT80CnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+Cooling+Load+Estimation+via+Hybrid+Models+Based+on+the+Radial+Basis+Function&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=PDF&rft.date=2024&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=15&rft.issue=4&rft_id=info:doi/10.14569%2FIJACSA.2024.01504102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon