Resilience Distributed MPC for Dynamically Coupled Multiple Cyber-Physical Systems Subject to Severe Attacks

This article proposes a resilient distributed model predictive control (DMPC) algorithm for a class of constrained dynamically coupled multiple cyber-physical systems (CPSs) subject to bounded additive disturbances. The algorithm is designed to address severe attacks on the forward controller-actuat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 55; číslo 7; s. 3193 - 3205
Hlavní autori: Yang, Huan, Dai, Li, Ma, Yaling, Qiang, Zhiwen, Xia, Yuanqing, Liu, Guo-Ping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.07.2025
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article proposes a resilient distributed model predictive control (DMPC) algorithm for a class of constrained dynamically coupled multiple cyber-physical systems (CPSs) subject to bounded additive disturbances. The algorithm is designed to address severe attacks on the forward controller-actuator (C-A) channel, the feedback sensor-controller (S-C) channel, and the channels between subsystems, without any prior information about the intruder available to the defender. To mitigate the negative effects of intruders, we consider a one-step time delay strategy in the local model predictive controller design. This strategy allows the generated controller data to be checked for acceptability before use. To ensure constraint satisfaction for an infinite-horizon MPC problem while accounting for the unknown duration of attacks, we develop a set of minimally conservative constraints in the open-loop control mode using a constraint tightening technique. Moreover, we obtain an equivalent finite number of constraints for the infinite-horizon problem to ensure recursive feasibility. To prevent tampered data from affecting control performance, a detector module is designed to decide whether data is used by its receiver. It is shown that the closed-loop system is uniformly ultimate boundedness (UUB) under any admissible attack scenario and disturbance realization. Finally, the effectiveness of the proposed algorithm is validated by a case study.
AbstractList This article proposes a resilient distributed model predictive control (DMPC) algorithm for a class of constrained dynamically coupled multiple cyber-physical systems (CPSs) subject to bounded additive disturbances. The algorithm is designed to address severe attacks on the forward controller-actuator (C-A) channel, the feedback sensor-controller (S-C) channel, and the channels between subsystems, without any prior information about the intruder available to the defender. To mitigate the negative effects of intruders, we consider a one-step time delay strategy in the local model predictive controller design. This strategy allows the generated controller data to be checked for acceptability before use. To ensure constraint satisfaction for an infinite-horizon MPC problem while accounting for the unknown duration of attacks, we develop a set of minimally conservative constraints in the open-loop control mode using a constraint tightening technique. Moreover, we obtain an equivalent finite number of constraints for the infinite-horizon problem to ensure recursive feasibility. To prevent tampered data from affecting control performance, a detector module is designed to decide whether data is used by its receiver. It is shown that the closed-loop system is uniformly ultimate boundedness (UUB) under any admissible attack scenario and disturbance realization. Finally, the effectiveness of the proposed algorithm is validated by a case study.This article proposes a resilient distributed model predictive control (DMPC) algorithm for a class of constrained dynamically coupled multiple cyber-physical systems (CPSs) subject to bounded additive disturbances. The algorithm is designed to address severe attacks on the forward controller-actuator (C-A) channel, the feedback sensor-controller (S-C) channel, and the channels between subsystems, without any prior information about the intruder available to the defender. To mitigate the negative effects of intruders, we consider a one-step time delay strategy in the local model predictive controller design. This strategy allows the generated controller data to be checked for acceptability before use. To ensure constraint satisfaction for an infinite-horizon MPC problem while accounting for the unknown duration of attacks, we develop a set of minimally conservative constraints in the open-loop control mode using a constraint tightening technique. Moreover, we obtain an equivalent finite number of constraints for the infinite-horizon problem to ensure recursive feasibility. To prevent tampered data from affecting control performance, a detector module is designed to decide whether data is used by its receiver. It is shown that the closed-loop system is uniformly ultimate boundedness (UUB) under any admissible attack scenario and disturbance realization. Finally, the effectiveness of the proposed algorithm is validated by a case study.
This article proposes a resilient distributed model predictive control (DMPC) algorithm for a class of constrained dynamically coupled multiple cyber-physical systems (CPSs) subject to bounded additive disturbances. The algorithm is designed to address severe attacks on the forward controller-actuator (C-A) channel, the feedback sensor-controller (S-C) channel, and the channels between subsystems, without any prior information about the intruder available to the defender. To mitigate the negative effects of intruders, we consider a one-step time delay strategy in the local model predictive controller design. This strategy allows the generated controller data to be checked for acceptability before use. To ensure constraint satisfaction for an infinite-horizon MPC problem while accounting for the unknown duration of attacks, we develop a set of minimally conservative constraints in the open-loop control mode using a constraint tightening technique. Moreover, we obtain an equivalent finite number of constraints for the infinite-horizon problem to ensure recursive feasibility. To prevent tampered data from affecting control performance, a detector module is designed to decide whether data is used by its receiver. It is shown that the closed-loop system is uniformly ultimate boundedness (UUB) under any admissible attack scenario and disturbance realization. Finally, the effectiveness of the proposed algorithm is validated by a case study.
Author Qiang, Zhiwen
Xia, Yuanqing
Yang, Huan
Dai, Li
Liu, Guo-Ping
Ma, Yaling
Author_xml – sequence: 1
  givenname: Huan
  orcidid: 0000-0001-8539-7104
  surname: Yang
  fullname: Yang, Huan
  email: yanghuanysu@163.com
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0002-7268-7548
  surname: Dai
  fullname: Dai, Li
  email: li.dai@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Yaling
  surname: Ma
  fullname: Ma, Yaling
  email: ma1821989042@gmail.com
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Zhiwen
  orcidid: 0009-0000-2598-9888
  surname: Qiang
  fullname: Qiang, Zhiwen
  email: qzw7000@163.com
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Yuanqing
  orcidid: 0000-0002-5977-4911
  surname: Xia
  fullname: Xia, Yuanqing
  email: xia_yuanqing@bit.edu.cn
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Guo-Ping
  orcidid: 0000-0002-0699-2296
  surname: Liu
  fullname: Liu, Guo-Ping
  email: liugp@sustech.edu.cn
  organization: Center for Control Science and Technology, Southern University of Science and Technology, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40418597$$D View this record in MEDLINE/PubMed
BookMark eNpFkU1v2zAMhoUiQ5u1_QEFhkHHXZxKcvThY-Z2H0CGFk176MmQZQpTJ9uZJA_wv6-NZC1JgAT5kAe-H9Gi6ztA6IqSFaWkuH4sn7-uGGF8lXNR5FKeoCWjQmWMSb54q4U8Q5cxvpDJ1NQq1Ck6W5M1VbyQS-QfIDrvoDOAb1xMwdVDggb_ui-x7QO-GTvdOqO9H3HZD3s_zwaf3FThcqwhZPe_xzgTeDfGBG3Eu6F-AZNw6vEO_kEAvElJmz_xAn2w2ke4POZz9PTt9rH8kW3vvv8sN9vMMClSRhVTmudWEQmiqYklyjRaUM6JlGsl15xbqrnkBopG5FNoY60ohGaWy1rm5-jL4e4-9H8HiKlqXTTgve6gH2KVMzo5YQWf0M9HdKhbaKp9cK0OY_X_QxNAD4AJfYwB7BtCSTULUc1CVLMQ1VGIaefTYccBwDtPCeWC0fwVP4WDjw
CODEN ITCEB8
Cites_doi 10.1109/TAC.2021.3084237
10.1109/TCYB.2021.3060743
10.1109/JAS.2020.1003542
10.1109/TAC.2020.3022734
10.1109/TICPS.2023.3283229
10.1109/TCYB.2023.3252570
10.1109/ftcs.1995.466961
10.1016/j.automatica.2023.110957
10.1007/978-3-319-24853-0
10.1109/TCYB.2023.3324179
10.1109/TVT.2022.3215966
10.1109/TSG.2022.3217807
10.1109/TSMC.2018.2866965
10.1016/j.automatica.2021.109953
10.1109/TCSII.2024.3352667
10.1016/j.arcontrol.2021.10.005
10.1109/TII.2021.3139127
10.1016/j.conengprac.2021.104879
10.1109/TCYB.2022.3218026
10.1016/j.sysconle.2019.04.001
10.1109/MCS.2014.2320397
10.1109/TCYB.2021.3062056
10.1016/j.automatica.2012.03.020
10.1002/rnc.4654
10.1007/978-0-8176-4606-6
10.1016/S0005-1098(01)00051-6
10.1109/TSMC.2023.3299269
10.1109/TCSII.2021.3076764
10.1109/TASE.2021.3058298
10.1016/j.arcontrol.2012.03.005
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2025.3569377
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3205
ExternalDocumentID 40418597
10_1109_TCYB_2025_3569377
11015621
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173036; 62122014
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c276t-1828a53f807e6db0f08cda6155077487455f1a575ce9d63d63acff696a2f57b73
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499482400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 22:43:09 EDT 2025
Wed Jun 25 03:00:47 EDT 2025
Sat Nov 29 07:51:13 EST 2025
Wed Aug 27 01:35:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-1828a53f807e6db0f08cda6155077487455f1a575ce9d63d63acff696a2f57b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8539-7104
0000-0002-7268-7548
0000-0002-5977-4911
0009-0000-2598-9888
0000-0002-0699-2296
PMID 40418597
PQID 3212120295
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_40418597
proquest_miscellaneous_3212120295
ieee_primary_11015621
crossref_primary_10_1109_TCYB_2025_3569377
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Blanchini (ref27) 2008
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Kouvaritakis (ref28) 2016
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/TAC.2021.3084237
– ident: ref7
  doi: 10.1109/TCYB.2021.3060743
– ident: ref18
  doi: 10.1109/JAS.2020.1003542
– ident: ref25
  doi: 10.1109/TAC.2020.3022734
– ident: ref21
  doi: 10.1109/TICPS.2023.3283229
– ident: ref10
  doi: 10.1109/TCYB.2023.3252570
– ident: ref3
  doi: 10.1109/ftcs.1995.466961
– ident: ref16
  doi: 10.1016/j.automatica.2023.110957
– volume-title: Model Predictive Control: Classical, Robust, and Stochastic
  year: 2016
  ident: ref28
  doi: 10.1007/978-3-319-24853-0
– ident: ref20
  doi: 10.1109/TCYB.2023.3324179
– ident: ref22
  doi: 10.1109/TVT.2022.3215966
– ident: ref9
  doi: 10.1109/TSG.2022.3217807
– ident: ref29
  doi: 10.1109/TSMC.2018.2866965
– ident: ref4
  doi: 10.1016/j.automatica.2021.109953
– ident: ref11
  doi: 10.1109/TCSII.2024.3352667
– ident: ref5
  doi: 10.1016/j.arcontrol.2021.10.005
– ident: ref19
  doi: 10.1109/TII.2021.3139127
– ident: ref6
  doi: 10.1016/j.conengprac.2021.104879
– ident: ref23
  doi: 10.1109/TCYB.2022.3218026
– ident: ref17
  doi: 10.1016/j.sysconle.2019.04.001
– ident: ref1
  doi: 10.1109/MCS.2014.2320397
– ident: ref14
  doi: 10.1109/TCYB.2021.3062056
– ident: ref24
  doi: 10.1016/j.automatica.2012.03.020
– ident: ref12
  doi: 10.1002/rnc.4654
– volume-title: Set-Theoretic Methods in Control
  year: 2008
  ident: ref27
  doi: 10.1007/978-0-8176-4606-6
– ident: ref26
  doi: 10.1016/S0005-1098(01)00051-6
– ident: ref2
  doi: 10.1109/TSMC.2023.3299269
– ident: ref13
  doi: 10.1109/TCSII.2021.3076764
– ident: ref30
  doi: 10.1109/TASE.2021.3058298
– ident: ref8
  doi: 10.1016/j.arcontrol.2012.03.005
SSID ssj0000816898
Score 2.399018
Snippet This article proposes a resilient distributed model predictive control (DMPC) algorithm for a class of constrained dynamically coupled multiple cyber-physical...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3193
SubjectTerms Cyber–physical systems (CPSs)
distributed model predictive control (DMPC)
Heuristic algorithms
Nickel
Prediction algorithms
Predictive control
Prevention and mitigation
Protection
Resilience
resilient control
Security
severe attacks
Silicon
Surveys
Title Resilience Distributed MPC for Dynamically Coupled Multiple Cyber-Physical Systems Subject to Severe Attacks
URI https://ieeexplore.ieee.org/document/11015621
https://www.ncbi.nlm.nih.gov/pubmed/40418597
https://www.proquest.com/docview/3212120295
Volume 55
WOSCitedRecordID wos001499482400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePDi-1EfZQUPKkST5rHJUaPiQaXgg3oKm80sFEJT2lTov3dms61eehBCCHlsws5sZmZn5_sYO1cSvXgNEY7vQjuBjgJH4t4JVEKsKIWQBqz681m8vsb9ftKzxeqmFgYAzOIzuKZDk8svKjWlqbIbNFUYblDZ-KoQoinWWkyoGAYJw33bxQMH3Qphs5iem9y8p193GA12w2s_jNAkE_le4BJyC8E9_TFJhmNlubtpzM7j5j8_eIttWP-S3zYKsc1WYLjDtu0InvALCzN9ucsw8pwMSnOe3xN8LjFfQcFfeilHT5bfN1z1sixnPK2mo5Ku2eWHPJ3lMHZ6Vsjc4p5z_A3RvA6vK_4GOEiA39Y1VfHvsY_Hh_f0ybHcC47qiqh2MOyIZejr2BUQFbmr3VgVkpKYLjqMhJEfak-ir6cgKSIfN6m0jpJIdnUocuHvs9awGsIh48LVIYSeBIgDjFZ1nheeVrkg5yLOPWizq3n3Z6MGYiMzoYmbZCS2jMSWWbG12R518--Ntofb7GwusQwHCGU95BCq6STz0Th72EQSttlBI8rF03MNOFrS6jFbp5c3y3NPWKseT-GUranvejAZd1AL-3HHaOEPa33WqQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-KFuxLrdXaa2u7hT5YIZqvzSaPGiuWnseBV9GnsNnMgnBc5C5X8L_vzGZPffFBCCHkY1l2djK_2dmZH8APownFW8xIvxsbpDZLA03nIDUFs6I0Srti1VdDNRrl19fF2Ceru1wYRHSbz_CQL10sv2nNkpfKjshUkbvBaePrMk3jqE_XelhScRwSjv02pouAgIXyccwoLI4m5c0J-YOxPExkRkaZ6ffSkGu3cMGnJ0bJsaw8Dzid4TnbfGGX38FbjzDFcT8ltuAVzt7Dltfhhdj3haZ_bgP5novbqbsvTrmALnNfYSMuxqUgLCtOe7Z6PZ3ei7Jd3k35md-AKMr7GufB2ItZ-Mrngn5EvLIjulZcIqkJiuOu4zz-Hfh79mtSngeefSEwscq6gByPXMvE5qHCrKlDG-am0RzGDAkycpV8aSNNaM9g0WQJHdpYmxWZjq1UtUo-wNqsneFHECq0EmWkEfOU_FVb101kTa0YXuR1hAM4WA1_ddcX2aiccxIWFYutYrFVXmwD2OFhfnzRj_AAvq8kVpGKcNxDz7BdLqqEzHNETRRyALu9KB--Xs2AT8-0-g02zicXw2r4e_TnM7zhjvSbdb_AWjdf4h68Nv-628X8q5uL_wGvqtkI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilience+Distributed+MPC+for+Dynamically+Coupled+Multiple+Cyber-Physical+Systems+Subject+to+Severe+Attacks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yang%2C+Huan&rft.au=Dai%2C+Li&rft.au=Ma%2C+Yaling&rft.au=Qiang%2C+Zhiwen&rft.date=2025-07-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2025.3569377&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon