Energy-based USV maritime monitoring using multi-objective evolutionary algorithms

This study addresses the monitoring mission problem using an USV equipped with an on-board LiDAR allowing to monitor regions inside its coverage radius. The problem is formulated as a bi-objective coverage path planning with two conflicting objectives : minimization of the consumed energy and maximi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ocean engineering Ročník 253; s. 111182
Hlavní autori: Ouelmokhtar, Hand, Benmoussa, Yahia, Benazzouz, Djamel, Ait-Chikh, Mohamed Abdessamed, Lemarchand, Laurent
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2022
Elsevier
Predmet:
ISSN:0029-8018, 1873-5258
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study addresses the monitoring mission problem using an USV equipped with an on-board LiDAR allowing to monitor regions inside its coverage radius. The problem is formulated as a bi-objective coverage path planning with two conflicting objectives : minimization of the consumed energy and maximization of the coverage rate. To solve the problem, we use two popular multi-objective evolutionary algorithms : Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Pareto Archived Evolution Strategy (PAES). First, we compare the efficiency of these two algorithms and show that PAES allows to find solutions allowing to save more energy as compared to those provided by NSGA-II. Then, we propose a new method which improves the performance of evolutionary algorithms when solving covering path planning problems by reducing the chromosome size. We have applied this method on the used algorithms and simulation results shows a significant performance enhancement both PAES and NSGA-II. •Unmanned maritime surface drones for performing surveillance tasks.•Coverage area and energy consumption optimization.•Global covering path planning.•New methodology to enhance problem solving performance.•Performance and solution quality comparison with conventional methods.
AbstractList This study addresses the monitoring mission problem using an USV equipped with an on-board LiDAR allowing to monitor regions inside its coverage radius. The problem is formulated as a bi-objective coverage path planning with two conflicting objectives : minimization of the consumed energy and maximization of the coverage rate. To solve the problem, we use two popular multi-objective evolutionary algorithms : Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Pareto Archived Evolution Strategy (PAES). First, we compare the efficiency of these two algorithms and show that PAES allows to find solutions allowing to save more energy as compared to those provided by NSGA-II. Then, we propose a new method which improves the performance of evolutionary algorithms when solving covering path planning problems by reducing the chromosome size. We have applied this method on the used algorithms and simulation results shows a significant performance enhancement both PAES and NSGA-II. •Unmanned maritime surface drones for performing surveillance tasks.•Coverage area and energy consumption optimization.•Global covering path planning.•New methodology to enhance problem solving performance.•Performance and solution quality comparison with conventional methods.
ArticleNumber 111182
Author Benazzouz, Djamel
Ait-Chikh, Mohamed Abdessamed
Lemarchand, Laurent
Ouelmokhtar, Hand
Benmoussa, Yahia
Author_xml – sequence: 1
  givenname: Hand
  surname: Ouelmokhtar
  fullname: Ouelmokhtar, Hand
  email: h.ouelmokhtar@univ-boumerdes.dz
  organization: LMSS/University M’Hamed Bougara, Boumerdes, Algeria
– sequence: 2
  givenname: Yahia
  surname: Benmoussa
  fullname: Benmoussa, Yahia
  email: y.benmoussa@univ-boumerdes.dz
  organization: LMSS/University M’Hamed Bougara, Boumerdes, Algeria
– sequence: 3
  givenname: Djamel
  surname: Benazzouz
  fullname: Benazzouz, Djamel
  email: d.benazzouz@univ-boumerdes.dz
  organization: LMSS/University M’Hamed Bougara, Boumerdes, Algeria
– sequence: 4
  givenname: Mohamed Abdessamed
  orcidid: 0000-0002-4032-4443
  surname: Ait-Chikh
  fullname: Ait-Chikh, Mohamed Abdessamed
  email: m.aitchikh@univ-boumerdes.dz
  organization: University M’Hamed Bougara, Boumerdes, Algeria
– sequence: 5
  givenname: Laurent
  orcidid: 0000-0003-0894-4076
  surname: Lemarchand
  fullname: Lemarchand, Laurent
  email: laurent.lemarchand@univ-brest.fr
  organization: Lab-STICC/University of Bretagne Occidentale, France
BackLink https://hal.univ-brest.fr/hal-03660258$$DView record in HAL
BookMark eNqFkF9LwzAUxYNMcJt-BemrD61J_6bgg2NMJwwEdb6GNL3tMtpEkmywb29K3Ysvy0MuhHNuzvnN0ERpBQjdExwRTPLHfaQFcAWqjWIcxxHxh8ZXaEpokYRZnNEJmmIclyHFhN6gmbV7jHGe42SKPlYKTHsKK26hDraf30HPjXSyh6DXSjptpGqDgx3u_tA5GepqD8LJIwRw1N3BSa24OQW8a73W7Xp7i64b3lm4-5tztH1ZfS3X4eb99W252IQiLnIXkrThaUYyWvCiKEsQFR1yC17XVdxUPCUkpyWnlR-pqNOigNL3yyqaNk3WlMkcPYx7d7xjP0b64CemuWTrxYYNbzjxHX39I_Hap1ErjLbWQMOEdHzI7gyXHSOYDSzZnp1ZsoElG1l6e_7Pfv7vovF5NIIHcZRgmBUSlIBaGk-R1VpeWvELrfuVLg
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_113661
crossref_primary_10_1016_j_oceaneng_2023_114354
crossref_primary_10_1016_j_dt_2025_01_008
crossref_primary_10_3390_jmse13061068
crossref_primary_10_1080_17445302_2025_2503500
crossref_primary_10_1016_j_isatra_2025_06_030
crossref_primary_10_1016_j_oceaneng_2024_120165
crossref_primary_10_1016_j_oceaneng_2023_116091
crossref_primary_10_3390_jmse12030382
crossref_primary_10_1016_j_apm_2023_07_024
crossref_primary_10_1016_j_cor_2023_106472
crossref_primary_10_3390_drones7010021
crossref_primary_10_1016_j_oceaneng_2024_116921
crossref_primary_10_1016_j_oceaneng_2023_116403
crossref_primary_10_3390_jmse13071259
crossref_primary_10_1007_s10846_022_01717_x
crossref_primary_10_1016_j_oceaneng_2024_117395
crossref_primary_10_3390_jmse11071259
crossref_primary_10_3390_jmse12040627
crossref_primary_10_1016_j_swevo_2024_101505
crossref_primary_10_1016_j_apor_2024_103992
crossref_primary_10_1109_TITS_2024_3419585
crossref_primary_10_1016_j_eswa_2025_127961
crossref_primary_10_1177_09596518241227131
crossref_primary_10_1016_j_oceaneng_2023_113903
Cites_doi 10.1162/106365600568167
10.1016/j.oceaneng.2018.09.016
10.1016/j.oceaneng.2018.01.025
10.1016/j.isatra.2018.02.003
10.1016/j.oceaneng.2017.07.040
10.1016/j.eswa.2016.11.005
10.1155/2018/6392697
10.1109/4235.996017
10.4108/eai.23-4-2018.2277598
10.1016/j.oceaneng.2020.107043
10.1016/j.arcontrol.2016.04.018
10.1155/2019/2902170
10.1002/rob.20353
10.1016/j.asoc.2016.09.007
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.oceaneng.2022.111182
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
Computer Science
EISSN 1873-5258
ExternalDocumentID oai:HAL:hal-03660258v1
10_1016_j_oceaneng_2022_111182
S002980182200587X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
~HD
1XC
ID FETCH-LOGICAL-c276t-14fa451587a7799ecb81182caddb2fba411689a8b1684cd477e92025b84ff5f93
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798214600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Tue Oct 14 20:56:33 EDT 2025
Sat Nov 29 07:26:36 EST 2025
Tue Nov 18 22:12:50 EST 2025
Fri Feb 23 02:37:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Covering Path Planning
Chromosome size
USV
MOEA
Way-points
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c276t-14fa451587a7799ecb81182caddb2fba411689a8b1684cd477e92025b84ff5f93
ORCID 0000-0003-0894-4076
0000-0002-4032-4443
ParticipantIDs hal_primary_oai_HAL_hal_03660258v1
crossref_citationtrail_10_1016_j_oceaneng_2022_111182
crossref_primary_10_1016_j_oceaneng_2022_111182
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_111182
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
2022-06
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Coello, Lamont, Van Veldhuizen (b1) 2007
Shafer, Benjamin, Leonard, Curcio (b15) 2008
Zames, Ajlouni, Ajlouni, Ajlouni, Holland, Hills, Goldberg (b22) 1981; 3
Steimle, Hall (b19) 2006
Ngatchou, Zarei, El-Sharkawi (b11) 2005
Ramadhan, Z., Siahaan, A.P.U., Mesran, M., 2018. Prim and floyd-warshall comparative algorithms in shortest path problem. In: Proceedings of the Joint Workshop KO2PI and the 1st International Conference on Advance & Scientific Innovation, pp. 47–58.
Niu, Lu, Savvaris, Tsourdos (b12) 2018; 161
Singh, Sharma, Sutton, Hatton, Khan (b17) 2018; 169
Eiben, Smith (b3) 2015
Knowles, Corne (b5) 2000; 8
Deb, Pratap, Agarwal, Meyarivan (b2) 2002; 6
Zhou, Gu, Wen, Du, Xiao, Huang, Zhu (b24) 2020; 200
Lazarowska (b6) 2017; 71
Yahyaa, Drugan, Manderick (b21) 2014
Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report, 103.
Ma, Hu, Yan (b8) 2018; 75
Marin-Plaza, Hussein, Martin, Escalera (b10) 2018; 2018
Xia, Han, Zhao, Liu, Wang (b20) 2019; 2019
Mahmoodabadi, Maafi, Taherkhorsandi (b9) 2017; 52
Pastore, Djapic (b13) 2010; 27
Song (b18) 2014
Kim, Kim, Jeon, Kim, Song, Paik (b4) 2017; 142
Liu, Zhang, Yu, Yuan (b7) 2016; 41
Zhang, Xu, Xie (b23) 2019
Singh, Sharma, Sutton, Hatton (b16) 2018; 12
Eiben (10.1016/j.oceaneng.2022.111182_b3) 2015
Mahmoodabadi (10.1016/j.oceaneng.2022.111182_b9) 2017; 52
10.1016/j.oceaneng.2022.111182_b14
Shafer (10.1016/j.oceaneng.2022.111182_b15) 2008
Zhou (10.1016/j.oceaneng.2022.111182_b24) 2020; 200
Liu (10.1016/j.oceaneng.2022.111182_b7) 2016; 41
Zhang (10.1016/j.oceaneng.2022.111182_b23) 2019
Niu (10.1016/j.oceaneng.2022.111182_b12) 2018; 161
Deb (10.1016/j.oceaneng.2022.111182_b2) 2002; 6
Singh (10.1016/j.oceaneng.2022.111182_b17) 2018; 169
Song (10.1016/j.oceaneng.2022.111182_b18) 2014
Steimle (10.1016/j.oceaneng.2022.111182_b19) 2006
Lazarowska (10.1016/j.oceaneng.2022.111182_b6) 2017; 71
Ngatchou (10.1016/j.oceaneng.2022.111182_b11) 2005
Xia (10.1016/j.oceaneng.2022.111182_b20) 2019; 2019
10.1016/j.oceaneng.2022.111182_b25
Marin-Plaza (10.1016/j.oceaneng.2022.111182_b10) 2018; 2018
Kim (10.1016/j.oceaneng.2022.111182_b4) 2017; 142
Singh (10.1016/j.oceaneng.2022.111182_b16) 2018; 12
Yahyaa (10.1016/j.oceaneng.2022.111182_b21) 2014
Pastore (10.1016/j.oceaneng.2022.111182_b13) 2010; 27
Ma (10.1016/j.oceaneng.2022.111182_b8) 2018; 75
Zames (10.1016/j.oceaneng.2022.111182_b22) 1981; 3
Knowles (10.1016/j.oceaneng.2022.111182_b5) 2000; 8
Coello (10.1016/j.oceaneng.2022.111182_b1) 2007
References_xml – start-page: 1
  year: 2019
  end-page: 7
  ident: b23
  article-title: Path planning of USv based on improved hybrid genetic algorithm
  publication-title: 2019 European Navigation Conference (ENC)
– reference: Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report, 103.
– volume: 41
  start-page: 71
  year: 2016
  end-page: 93
  ident: b7
  article-title: Unmanned surface vehicles: An overview of developments and challenges
  publication-title: Annu. Rev. Control
– volume: 161
  start-page: 308
  year: 2018
  end-page: 321
  ident: b12
  article-title: An energy-efficient path planning algorithm for unmanned surface vehicles
  publication-title: Ocean Eng.
– reference: Ramadhan, Z., Siahaan, A.P.U., Mesran, M., 2018. Prim and floyd-warshall comparative algorithms in shortest path problem. In: Proceedings of the Joint Workshop KO2PI and the 1st International Conference on Advance & Scientific Innovation, pp. 47–58.
– start-page: 2290
  year: 2014
  end-page: 2297
  ident: b21
  article-title: The scalarized multi-objective multi-armed bandit problem: An empirical study of its exploration vs. exploitation tradeoff
  publication-title: 2014 International Joint Conference on Neural Networks (IJCNN)
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: b5
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evol. Comput.
– volume: 12
  year: 2018
  ident: b16
  article-title: Towards use of dijkstra algorithm for optimal navigation of an unmanned surface vehicle in a real-time marine environment with results from artificial potential field
  publication-title: TransNav, Int. J. Mar. Navig. Saf. Sea Transp.
– volume: 142
  start-page: 616
  year: 2017
  end-page: 624
  ident: b4
  article-title: A study on path optimization method of an unmanned surface vehicle under environmental loads using genetic algorithm
  publication-title: Ocean Eng.
– volume: 75
  start-page: 137
  year: 2018
  end-page: 156
  ident: b8
  article-title: Multi-objective path planning for unmanned surface vehicle with currents effects
  publication-title: ISA Trans.
– year: 2007
  ident: b1
  article-title: Evolutionary Algorithms for Solving Multi-Objective Problems, Vol. 5
– volume: 2018
  year: 2018
  ident: b10
  article-title: Global and local path planning study in a ROS-based research platform for autonomous vehicles
  publication-title: J. Adv. Transp.
– volume: 27
  start-page: 903
  year: 2010
  end-page: 914
  ident: b13
  article-title: Improving autonomy and control of autonomous surface vehicles in port protection and mine countermeasure scenarios
  publication-title: J. Field Robotics
– start-page: 785
  year: 2014
  end-page: 788
  ident: b18
  article-title: Global path planning method for USv system based on improved ant colony algorithm
  publication-title: Applied Mechanics and Materials, Vol. 568
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b2
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 169
  start-page: 187
  year: 2018
  end-page: 201
  ident: b17
  article-title: A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents
  publication-title: Ocean Eng.
– volume: 200
  year: 2020
  ident: b24
  article-title: The review unmanned surface vehicle path planning: Based on multi-modality constraint
  publication-title: Ocean Eng.
– start-page: 1
  year: 2008
  end-page: 10
  ident: b15
  article-title: Autonomous cooperation of heterogeneous platforms for sea-based search tasks
  publication-title: OCEANS 2008
– volume: 3
  start-page: 301
  year: 1981
  end-page: 302
  ident: b22
  article-title: Genetic algorithms in search, optimization and machine learning
  publication-title: Inform. Technol. J.
– volume: 52
  start-page: 1191
  year: 2017
  end-page: 1199
  ident: b9
  article-title: An optimal adaptive robust PID controller subject to fuzzy rules and sliding modes for MIMO uncertain chaotic systems
  publication-title: Appl. Soft Comput.
– volume: 2019
  year: 2019
  ident: b20
  article-title: Global path planning for unmanned surface vehicle based on improved quantum ant colony algorithm
  publication-title: Math. Probl. Eng.
– start-page: 25
  year: 2015
  end-page: 48
  ident: b3
  article-title: What is an evolutionary algorithm?
  publication-title: Introduction to Evolutionary Computing
– volume: 71
  start-page: 469
  year: 2017
  end-page: 478
  ident: b6
  article-title: A new deterministic approach in a decision support system for ship’s trajectory planning
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2006
  end-page: 5
  ident: b19
  article-title: Unmanned surface vehicles as environmental monitoring and assessment tools
  publication-title: OCEANS 2006
– start-page: 84
  year: 2005
  end-page: 91
  ident: b11
  article-title: Pareto multi objective optimization
  publication-title: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems
– volume: 12
  issue: 1
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111182_b16
  article-title: Towards use of dijkstra algorithm for optimal navigation of an unmanned surface vehicle in a real-time marine environment with results from artificial potential field
  publication-title: TransNav, Int. J. Mar. Navig. Saf. Sea Transp.
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.oceaneng.2022.111182_b5
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568167
– start-page: 84
  year: 2005
  ident: 10.1016/j.oceaneng.2022.111182_b11
  article-title: Pareto multi objective optimization
– start-page: 25
  year: 2015
  ident: 10.1016/j.oceaneng.2022.111182_b3
  article-title: What is an evolutionary algorithm?
– start-page: 1
  year: 2008
  ident: 10.1016/j.oceaneng.2022.111182_b15
  article-title: Autonomous cooperation of heterogeneous platforms for sea-based search tasks
– volume: 169
  start-page: 187
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111182_b17
  article-title: A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.09.016
– volume: 3
  start-page: 301
  issue: 1
  year: 1981
  ident: 10.1016/j.oceaneng.2022.111182_b22
  article-title: Genetic algorithms in search, optimization and machine learning
  publication-title: Inform. Technol. J.
– volume: 161
  start-page: 308
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111182_b12
  article-title: An energy-efficient path planning algorithm for unmanned surface vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.01.025
– volume: 75
  start-page: 137
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111182_b8
  article-title: Multi-objective path planning for unmanned surface vehicle with currents effects
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.02.003
– start-page: 1
  year: 2006
  ident: 10.1016/j.oceaneng.2022.111182_b19
  article-title: Unmanned surface vehicles as environmental monitoring and assessment tools
– volume: 142
  start-page: 616
  year: 2017
  ident: 10.1016/j.oceaneng.2022.111182_b4
  article-title: A study on path optimization method of an unmanned surface vehicle under environmental loads using genetic algorithm
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.07.040
– volume: 71
  start-page: 469
  year: 2017
  ident: 10.1016/j.oceaneng.2022.111182_b6
  article-title: A new deterministic approach in a decision support system for ship’s trajectory planning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.11.005
– volume: 2018
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111182_b10
  article-title: Global and local path planning study in a ROS-based research platform for autonomous vehicles
  publication-title: J. Adv. Transp.
  doi: 10.1155/2018/6392697
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.oceaneng.2022.111182_b2
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– start-page: 785
  year: 2014
  ident: 10.1016/j.oceaneng.2022.111182_b18
  article-title: Global path planning method for USv system based on improved ant colony algorithm
– ident: 10.1016/j.oceaneng.2022.111182_b14
  doi: 10.4108/eai.23-4-2018.2277598
– start-page: 2290
  year: 2014
  ident: 10.1016/j.oceaneng.2022.111182_b21
  article-title: The scalarized multi-objective multi-armed bandit problem: An empirical study of its exploration vs. exploitation tradeoff
– volume: 200
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111182_b24
  article-title: The review unmanned surface vehicle path planning: Based on multi-modality constraint
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107043
– volume: 41
  start-page: 71
  year: 2016
  ident: 10.1016/j.oceaneng.2022.111182_b7
  article-title: Unmanned surface vehicles: An overview of developments and challenges
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2016.04.018
– volume: 2019
  year: 2019
  ident: 10.1016/j.oceaneng.2022.111182_b20
  article-title: Global path planning for unmanned surface vehicle based on improved quantum ant colony algorithm
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/2902170
– volume: 27
  start-page: 903
  issue: 6
  year: 2010
  ident: 10.1016/j.oceaneng.2022.111182_b13
  article-title: Improving autonomy and control of autonomous surface vehicles in port protection and mine countermeasure scenarios
  publication-title: J. Field Robotics
  doi: 10.1002/rob.20353
– year: 2007
  ident: 10.1016/j.oceaneng.2022.111182_b1
– start-page: 1
  year: 2019
  ident: 10.1016/j.oceaneng.2022.111182_b23
  article-title: Path planning of USv based on improved hybrid genetic algorithm
– ident: 10.1016/j.oceaneng.2022.111182_b25
– volume: 52
  start-page: 1191
  year: 2017
  ident: 10.1016/j.oceaneng.2022.111182_b9
  article-title: An optimal adaptive robust PID controller subject to fuzzy rules and sliding modes for MIMO uncertain chaotic systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.09.007
SSID ssj0006603
Score 2.4691153
Snippet This study addresses the monitoring mission problem using an USV equipped with an on-board LiDAR allowing to monitor regions inside its coverage radius. The...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 111182
SubjectTerms Chromosome size
Computer Science
Covering Path Planning
Embedded Systems
MOEA
Operations Research
USV
Way-points
Title Energy-based USV maritime monitoring using multi-objective evolutionary algorithms
URI https://dx.doi.org/10.1016/j.oceaneng.2022.111182
https://hal.univ-brest.fr/hal-03660258
Volume 253
WOSCitedRecordID wos000798214600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jgdAQjBAjC9FiLcopU2c2H6MRlFBYyDYUHmKHMch7Zpk2tJq2p_AX83ZcT4YH2MPvCSVUzu-3C93l9N9IPTSjV3secRzUlCXDo4BxiwJEicI0mTsSzZ2hS6Zv08ODuh8zj4OBt-bXJjNihQFPT9nJ_-V1TAGzFaps9dgd7soDMBvYDocge1w_CfGT3U2n6PUU2Ifff5i51wVLsqlnev3VwfcrbWLQEcTOmW8rKWeLTdmZyqUjq--wX-rzJQzNwbsB6Fc97KrYth6addylZfHWVVHbM_qziAmB6hQDoYzbad-5dmC967wi4tyrb3Yr5c8l23AR7ionL1scazdPu_LDK4ldhgnqmVLbjKyjLcCPnTbqKo2e4AprUj7Etj1vZ4MVUK8bkj0i3ivPQ3LUaloBVJH6hajbsLP9bQv6bk2-rAJbFtGzTqRWieq19lC2y7xGR2i7fDtdP6u1etBMPaagCFFQS_f_Pc7-pOps5U1TnttxBzeRXfM14cV1qi5hway2EG3ejUpd9BtzWFTyPw--tSHkwVwsho4WR2cLA0n6xKcrD6crA5OD9DRm-nh3swxfTgc4ZKgciY45RjsXko4IYxJEVNFngDVGLtpzPFkElDGaQwnLBJMiGTwGPyY4jT1U-Y9RMOiLOQjZAlfpAkeJzIQHk5iMBQwlR4nUqaEUCx3kd88skiYIvWqV8oq-jvTdtGrdt5JXablyhms4UhkjM3aiIwAbFfOfQEsbG-kKrTPwv1IjYFBGADpdDN5fO0tPUE3u1fmKRpWp2v5DN0Qm2pxdvrcwPEH7a-zNQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-based+USV+maritime+monitoring+using+multi-objective+evolutionary+algorithms&rft.jtitle=Ocean+engineering&rft.au=Ouelmokhtar%2C+Hand&rft.au=Benmoussa%2C+Yahia&rft.au=Benazzouz%2C+Djamel&rft.au=Ait-Chikh%2C+Mohamed+Abdessamed&rft.date=2022-06-01&rft.issn=0029-8018&rft.volume=253&rft.spage=111182&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.111182&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2022_111182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon