Auto-Encoders Derivatives on Different Occluded Face Images: Comprehensive Review and New Results
This paper presents a novel approach for improving occluded face recognition performance using a family of autoencoders (AE) architectures. The proposed structures include four stages: image preprocessing, feature extraction using autoencoder derivatives, classification via a convolutional neural ne...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 195080 - 195103 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!