Crack Detection on Concrete Surfaces Using Deep Encoder-Decoder Convolutional Neural Network: A Comparison Study Between U-Net and DeepLabV3
Maintenance of infrastructures is a crucial activity to ensure safety using crack detection methods on concrete structures. However, most practice of crack detection is carried out manually, which is unsafe, highly subjective, and time-consuming. Therefore, a more accurate and efficient system needs...
Uložené v:
| Vydané v: | Journal of the Civil Engineering Forum Ročník 7; číslo 3; s. 323 - 334 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
Universitas Gadjah Mada
31.08.2021
|
| Predmet: | |
| ISSN: | 2581-1037, 2549-5925 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Maintenance of infrastructures is a crucial activity to ensure safety using crack detection methods on concrete structures. However, most practice of crack detection is carried out manually, which is unsafe, highly subjective, and time-consuming. Therefore, a more accurate and efficient system needs to be implemented using artificial intelligence. Convolutional neural network (CNN), a subset of artificial intelligence, is used to detect cracks on concrete surfaces through semantic image segmentation. The purpose of this research is to compare the effectiveness of cutting-edge encoder-decoder architectures in detecting cracks on concrete surfaces using U-Net and DeepLabV3+ architectures with potential in biomedical, and sparse multiscale image segmentations, respectively. Neural networks were trained using cloud computing with a high-performance Graphics Processing Unit NVIDIA Tesla V100 and 27.4 GB of RAM. This study used internal and external data. Internal data consisted of simple cracks and were used as the training and validation data. Meanwhile, external data consisted of more complex cracks, which were used for further testing. Both architectures were compared based on four evaluation metrics in terms of accuracy, F1, precision, and recall. U-Net achieved segmentation accuracy = 96.57%, F1 = 87.55%, precision = 88.15%, and recall = 88.94%, while DeepLabV3+ achieved segmentation accuracy = 96.47%, F1 = 85.29%, precision = 92.07%, and recall = 81.84%. Experiment results (internal and external data) indicated that both architectures were accurate and effective in segmenting cracks. Additionally, U-Net and DeepLabV3+ exceeded the performance of previously tested architecture, namely FCN. |
|---|---|
| AbstractList | Maintenance of infrastructures is a crucial activity to ensure safety using crack detection methods on concrete structures. However, most practice of crack detection is carried out manually, which is unsafe, highly subjective, and time-consuming. Therefore, a more accurate and efficient system needs to be implemented using artificial intelligence. Convolutional neural network (CNN), a subset of artificial intelligence, is used to detect cracks on concrete surfaces through semantic image segmentation. The purpose of this research is to compare the effectiveness of cutting-edge encoder-decoder architectures in detecting cracks on concrete surfaces using U-Net and DeepLabV3+ architectures with potential in biomedical, and sparse multiscale image segmentations, respectively. Neural networks were trained using cloud computing with a high-performance Graphics Processing Unit NVIDIA Tesla V100 and 27.4 GB of RAM. This study used internal and external data. Internal data consisted of simple cracks and were used as the training and validation data. Meanwhile, external data consisted of more complex cracks, which were used for further testing. Both architectures were compared based on four evaluation metrics in terms of accuracy, F1, precision, and recall. U-Net achieved segmentation accuracy = 96.57%, F1 = 87.55%, precision = 88.15%, and recall = 88.94%, while DeepLabV3+ achieved segmentation accuracy = 96.47%, F1 = 85.29%, precision = 92.07%, and recall = 81.84%. Experiment results (internal and external data) indicated that both architectures were accurate and effective in segmenting cracks. Additionally, U-Net and DeepLabV3+ exceeded the performance of previously tested architecture, namely FCN. |
| Author | Liyanto Eddy Kohei Nagai Patrick Nicholas Hadinata Djoni Simanta |
| Author_xml | – sequence: 1 givenname: Patrick Nicholas surname: Hadinata fullname: Hadinata, Patrick Nicholas – sequence: 2 givenname: Djoni surname: Simanta fullname: Simanta, Djoni – sequence: 3 givenname: Liyanto surname: Eddy fullname: Eddy, Liyanto – sequence: 4 givenname: Kohei surname: Nagai fullname: Nagai, Kohei |
| BackLink | https://cir.nii.ac.jp/crid/1870302168320919680$$DView record in CiNii |
| BookMark | eNptUctu1DAUjVCRKKUrfsALdijF79jsyrRApREsyrC1buzrym0aj5wMqP_AR-NkYIOQLB_73nOOH-dlczLmEZvmNaMXnDOp3917jBdacWOeNadcSdsqy9XJsjasZVR0L5rzaUo9lbKTylJz2vzaFPAP5Apn9HPKI6ljk0dfaoHcHkoEjxPZTWm8qyTck-vR54ClvcIVF_KPPBwWLQzkCx7KCvPPXB7ek8vaf9xDSVP1vZ0P4Yl8qD3EkezayiIwhtV3C_138ap5HmGY8PwPnjW7j9ffNp_b7ddPN5vLbet5p03Lre9BgA1aI3BplApSKGV6pBgk8h5sFJr3CroQPBdBmyiCkSxSbepOnDU3R9-Q4d7tS3qE8uQyJLcWcrlzUObkB3RdZMyADkJ0QkYM0Hccrbb11AhcmOrFjl6-5GkqGJ1PMyzfMRdIg2PUrem4JR23plM1b__R_L3D_9lvjuwxpWq-zMx0VFDO6nM4tcxqQ8VvPm2d9g |
| CitedBy_id | crossref_primary_10_1109_TGRS_2023_3315212 crossref_primary_10_1088_1742_6596_3071_1_012013 crossref_primary_10_2478_bipca_2021_0027 crossref_primary_10_3390_land14081544 crossref_primary_10_1109_ACCESS_2025_3536554 crossref_primary_10_3390_app13042398 crossref_primary_10_1016_j_compag_2025_110735 crossref_primary_10_3390_polym17091245 |
| ContentType | Journal Article |
| Contributor | Department of Civil Engineering, Universitas Katolik Parahyangan |
| Contributor_xml | – sequence: 1 fullname: Department of Civil Engineering, Universitas Katolik Parahyangan |
| DBID | RYH AAYXX CITATION DOA |
| DOI | 10.22146/jcef.65288 |
| DatabaseName | CiNii Complete CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2549-5925 |
| EndPage | 334 |
| ExternalDocumentID | oai_doaj_org_article_7f118a6d33734fedab72e969485fa238 10_22146_jcef_65288 |
| GroupedDBID | ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ OK1 RYH AAYXX CITATION |
| ID | FETCH-LOGICAL-c2768-29cba3a9d66ea24855d43558be0ed4e2ba9f362b5a7ddc23d68f3d841f0683d63 |
| IEDL.DBID | DOA |
| ISSN | 2581-1037 |
| IngestDate | Fri Oct 03 12:47:02 EDT 2025 Sat Nov 29 03:36:08 EST 2025 Tue Nov 18 22:29:02 EST 2025 Fri Jun 27 00:49:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English Japanese |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2768-29cba3a9d66ea24855d43558be0ed4e2ba9f362b5a7ddc23d68f3d841f0683d63 |
| ORCID | 0000-0002-9552-8777 |
| OpenAccessLink | https://doaj.org/article/7f118a6d33734fedab72e969485fa238 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7f118a6d33734fedab72e969485fa238 crossref_citationtrail_10_22146_jcef_65288 crossref_primary_10_22146_jcef_65288 nii_cinii_1870302168320919680 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-31 |
| PublicationDateYYYYMMDD | 2021-08-31 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the Civil Engineering Forum |
| PublicationYear | 2021 |
| Publisher | Universitas Gadjah Mada |
| Publisher_xml | – name: Universitas Gadjah Mada |
| SSID | ssib044745908 ssj0002246475 |
| Score | 2.1549814 |
| Snippet | Maintenance of infrastructures is a crucial activity to ensure safety using crack detection methods on concrete structures. However, most practice of crack... |
| SourceID | doaj crossref nii |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 323 |
| SubjectTerms | Civil Engineering convolutional neural network Convolutional Neural Network; U-Net; DeepLabV3+; Crack Detection; Maintenance of Infrastructures crack detection deeplabv3 Engineering (General). Civil engineering (General) maintenance of infrastructures TA1-2040 u-net |
| Title | Crack Detection on Concrete Surfaces Using Deep Encoder-Decoder Convolutional Neural Network: A Comparison Study Between U-Net and DeepLabV3 |
| URI | https://cir.nii.ac.jp/crid/1870302168320919680 https://doaj.org/article/7f118a6d33734fedab72e969485fa238 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2549-5925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002246475 issn: 2581-1037 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2549-5925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044745908 issn: 2581-1037 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBYj9LAdRtttLGs7dMhpoMWWFEneLU1SdtjCYMvIzcj6AdmKE7wk0Ev_gv3RfU_2shwGvQyMhM2zJes99J7Ep-8RMshk0BBZRBaNi0xWQrCiiorp3GUxz6OO0aZkE3o-N8tl8eUo1Rdiwlp64HbghhreMFZ5IbSQMXhbaR4KhaQm0YK_wdk308XRYgosSUotMZn3YbcFadNkYt3lI4MYLqHbw3ocE1sPf7gQ36sRT_lX_rqnxOIPTqderY6czs0ped5Fi3Tc9vKMPAn1OXl2xCH4gvyeNNb9pNOwTaCqmsI1WdcQDG4D_bprImKuaEIGgFDY0FmNx9gbNg2pRuF9Z3_QFJJ1pCqhwz_QMZ0cMhVSBB3e0esW2kUXDKSorX367idbfRcvyeJm9m3ykXUpFpjjsNBgvHCVFbbwSgWb2M28RML1KmTBy8ArW0RwcdXIau8dF16ZKLyRecyUgTvxivTqdR1eE-q0cCpzweUjLaOFdYuEqdNACARaslz1ybs_I1u6jn8c02DclrAOSWooUQ1lUkOfDA7Cm5Z2499i16iigwhyZacHYEFlZ0HlYxbUJ1egYOgTlrnBKZDn8HccQqlCmezN_2jkgjzliIZJu9GXpLdtduGKnLj9dvWreZuMF8rP97MHtojwAg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crack+Detection+on+Concrete+Surfaces+Using+Deep+Encoder-Decoder+Convolutional+Neural+Network%3A+A+Comparison+Study+Between+U-Net+and+DeepLabV3&rft.jtitle=Journal+of+the+civil+engineering+forum+%28Online%29&rft.au=Patrick+Nicholas+Hadinata&rft.au=Djoni+Simanta&rft.au=Liyanto+Eddy&rft.au=Kohei+Nagai&rft.date=2021-08-31&rft.pub=Universitas+Gadjah+Mada&rft.issn=2581-1037&rft.eissn=2549-5925&rft.volume=7&rft.issue=3&rft.spage=323&rft.epage=334&rft_id=info:doi/10.22146%2Fjcef.65288&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f118a6d33734fedab72e969485fa238 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2581-1037&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2581-1037&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2581-1037&client=summon |