Discrete complex-valued code pathfinder algorithm for wind farm layout optimization problem

•A discrete complex-valued code pathfinder algorithm (DCPFA) has been proposed.•The DCPFA algorithm’s exploration and exploitation abilities were improved.•The DCPFA is applied to solve wind farm layout optimization (WFLO) problem.•The experimental results show that DCPFA found solutions have lower...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management. X Vol. 16; p. 100307
Main Authors: Li, Ning, Zhou, Yongquan, Luo, Qifang, Huang, Huajuan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2022
Elsevier
Subjects:
ISSN:2590-1745, 2590-1745
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A discrete complex-valued code pathfinder algorithm (DCPFA) has been proposed.•The DCPFA algorithm’s exploration and exploitation abilities were improved.•The DCPFA is applied to solve wind farm layout optimization (WFLO) problem.•The experimental results show that DCPFA found solutions have lower cost values per unit of power. In wind farm planning, it is necessary to optimize the location of turbines to reduce the influence of eddy currents between each other and generate more energy. This problem is also transformed into a discrete optimization problem, it is named wind farm layout optimization (WFLO) problem, to solve this optimization problem we can obtain the optimal turbine placement scheme. With the complexity of wind condition in WFLO problem increases, it becomes very difficult to solve, so more and more researchers use metaheuristic algorithms to solve this problem. Improve the solution accuracy of the WFLO problem, it will increase renewable energy use and lowering carbon emissions. In order to improve the solution accuracy of WFLO problem, a discrete complex-valued code pathfinder algorithm (DCPFA) has been proposed in this paper, and used to solve the WFLO problem. In DCPFA, the algorithm’s exploration ability was improved, and the algorithm achieves a balance between exploration and exploitation. To test the performance of DCPFA in solving the WFLO problem, two complex wind conditions in wind farms are simulated. Comparing the results with other famous metaheuristic optimization algorithms and recently published literature, the DCPFA found a solution that will have lower cost values per unit of power, such as DCPFA’s solution in wind condition (1) can output 34120(KW), it is bigger than RSA’s 32498(KW) and GA’s 32038(KW), DCPFA’s solution in wind condition (2) can output 19375(KW), it is bigger than SSA’s 17781(KW) and BPSO-TVAV’s 15,796 (KW). More importantly, in the objective function (Cost/KW), DCPFA is also ranked first in two wind condition. According to the experimental results, it can be explained that DCPFA’s effectiveness and robustness in solving WFLO problems.
AbstractList In wind farm planning, it is necessary to optimize the location of turbines to reduce the influence of eddy currents between each other and generate more energy. This problem is also transformed into a discrete optimization problem, it is named wind farm layout optimization (WFLO) problem, to solve this optimization problem we can obtain the optimal turbine placement scheme. With the complexity of wind condition in WFLO problem increases, it becomes very difficult to solve, so more and more researchers use metaheuristic algorithms to solve this problem. Improve the solution accuracy of the WFLO problem, it will increase renewable energy use and lowering carbon emissions. In order to improve the solution accuracy of WFLO problem, a discrete complex-valued code pathfinder algorithm (DCPFA) has been proposed in this paper, and used to solve the WFLO problem. In DCPFA, the algorithm’s exploration ability was improved, and the algorithm achieves a balance between exploration and exploitation. To test the performance of DCPFA in solving the WFLO problem, two complex wind conditions in wind farms are simulated. Comparing the results with other famous metaheuristic optimization algorithms and recently published literature, the DCPFA found a solution that will have lower cost values per unit of power, such as DCPFA’s solution in wind condition (1) can output 34120(KW), it is bigger than RSA’s 32498(KW) and GA’s 32038(KW), DCPFA’s solution in wind condition (2) can output 19375(KW), it is bigger than SSA’s 17781(KW) and BPSO-TVAV’s 15,796 (KW). More importantly, in the objective function (Cost/KW), DCPFA is also ranked first in two wind condition. According to the experimental results, it can be explained that DCPFA’s effectiveness and robustness in solving WFLO problems.
•A discrete complex-valued code pathfinder algorithm (DCPFA) has been proposed.•The DCPFA algorithm’s exploration and exploitation abilities were improved.•The DCPFA is applied to solve wind farm layout optimization (WFLO) problem.•The experimental results show that DCPFA found solutions have lower cost values per unit of power. In wind farm planning, it is necessary to optimize the location of turbines to reduce the influence of eddy currents between each other and generate more energy. This problem is also transformed into a discrete optimization problem, it is named wind farm layout optimization (WFLO) problem, to solve this optimization problem we can obtain the optimal turbine placement scheme. With the complexity of wind condition in WFLO problem increases, it becomes very difficult to solve, so more and more researchers use metaheuristic algorithms to solve this problem. Improve the solution accuracy of the WFLO problem, it will increase renewable energy use and lowering carbon emissions. In order to improve the solution accuracy of WFLO problem, a discrete complex-valued code pathfinder algorithm (DCPFA) has been proposed in this paper, and used to solve the WFLO problem. In DCPFA, the algorithm’s exploration ability was improved, and the algorithm achieves a balance between exploration and exploitation. To test the performance of DCPFA in solving the WFLO problem, two complex wind conditions in wind farms are simulated. Comparing the results with other famous metaheuristic optimization algorithms and recently published literature, the DCPFA found a solution that will have lower cost values per unit of power, such as DCPFA’s solution in wind condition (1) can output 34120(KW), it is bigger than RSA’s 32498(KW) and GA’s 32038(KW), DCPFA’s solution in wind condition (2) can output 19375(KW), it is bigger than SSA’s 17781(KW) and BPSO-TVAV’s 15,796 (KW). More importantly, in the objective function (Cost/KW), DCPFA is also ranked first in two wind condition. According to the experimental results, it can be explained that DCPFA’s effectiveness and robustness in solving WFLO problems.
ArticleNumber 100307
Author Li, Ning
Luo, Qifang
Zhou, Yongquan
Huang, Huajuan
Author_xml – sequence: 1
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
– sequence: 2
  givenname: Yongquan
  orcidid: 0000-0003-4404-952X
  surname: Zhou
  fullname: Zhou, Yongquan
  email: yongquanzhou@126.com
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
– sequence: 3
  givenname: Qifang
  surname: Luo
  fullname: Luo, Qifang
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
– sequence: 4
  givenname: Huajuan
  surname: Huang
  fullname: Huang, Huajuan
  organization: College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
BookMark eNp9UMtOwzAQtBBIQOkPcPIPpNhObDcSF8SzUiUucOJgbZx16yqJIyfl9fW4FCFOSPscaUa7c0oOu9AhIeeczTjj6mIzQ9u-zwQTIgEsZ_qAnAhZsozrQh7-mY_JdBg2jDGRc6kKfkJebvxgI45IbWj7Bt-zV2i2WKe1RtrDuHa-qzFSaFYh-nHdUhcifUsgdRBb2sBH2I409KNv_SeMPnS0j6FqsD0jRw6aAac_fUKe726frh-y5eP94vpqmVmhlc44QO5QOqltLUEoMZ_bijNbllArxXFelCkrkSK3llXp-NymKnOUWheYT8hir1sH2Jg--hbihwngzTcQ4spAHL1t0MyFqpiqtHa5LMpCQSE4VKCAcwbSqaQl9lo2hmGI6H71ODM7t83G7Nw2O7fN3u1EutyTMH356jGawXrsLNY-oh3TGf4_-hfBEIp3
Cites_doi 10.1016/j.jclepro.2017.04.132
10.1016/j.rser.2011.07.042
10.1016/j.advengsoft.2015.05.002
10.1016/j.renene.2012.12.005
10.1016/j.apenergy.2016.06.101
10.1109/TSTE.2011.2174260
10.1016/j.renene.2021.02.038
10.1109/PTC.2011.6019366
10.1016/j.asoc.2019.03.012
10.1016/j.renene.2011.12.013
10.1016/j.renene.2004.05.007
10.1016/j.renene.2015.01.005
10.1109/UPCON.2016.7894677
10.1080/0305215X.2019.1624740
10.1016/j.enconman.2015.11.002
10.1109/TII.2017.2743761
10.1016/j.renene.2009.11.026
10.1016/j.rser.2015.12.229
10.1109/SIBGRAPI.2012.47
10.1038/s41560-018-0281-2
10.1007/s11831-021-09586-7
10.1016/j.enpol.2006.04.021
10.3390/electronics8101130
10.1016/j.jweia.2015.01.018
10.3934/mbe.2021192
10.1016/j.compstruc.2014.03.007
10.1049/iet-gtd.2020.0729
10.1016/0167-6105(94)90080-9
10.1109/ICEAS.2011.6147144
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ecmx.2022.100307
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1745
ExternalDocumentID oai_doaj_org_article_826b06b77f354946a421aba6a110a5f6
10_1016_j_ecmx_2022_100307
S2590174522001301
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c2767-1aa3fe5f57cd5a26288cb10c99ad661e849e84b24b23cc0b0233cb0253e5774e3
IEDL.DBID DOA
ISSN 2590-1745
IngestDate Fri Oct 03 12:52:30 EDT 2025
Thu Nov 20 00:49:11 EST 2025
Tue Jul 25 20:59:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wind farm layout optimization
Pathfinder algorithm
Discrete complex-valued code pathfinder algorithm
Metaheuristic
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2767-1aa3fe5f57cd5a26288cb10c99ad661e849e84b24b23cc0b0233cb0253e5774e3
ORCID 0000-0003-4404-952X
OpenAccessLink https://doaj.org/article/826b06b77f354946a421aba6a110a5f6
ParticipantIDs doaj_primary_oai_doaj_org_article_826b06b77f354946a421aba6a110a5f6
crossref_primary_10_1016_j_ecmx_2022_100307
elsevier_sciencedirect_doi_10_1016_j_ecmx_2022_100307
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Energy conversion and management. X
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lundquist, DuVivier, Kaffine (b0025) 2019; 4
Wan, Wang, Yang (b0065) 2010
Guirguis, Romero, Amon (b0030) 2016; 179
Mosetti, Poloni, Diviacco (b0045) 1994; 51
Kim, Singh, Sprintson (b0105) 2012; 3
Cheng, Prayogo (b0135) 2014; 139
S. Reddy, L.K. Panwar, B. Panigrahi, et al., Optimal scheduling of uncertain wind energy and demand response in unit commitment using binary grey wolf optimizer (BGWO), 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), IEEE, 2016, pp. 344-349.
Pookpunt, Ongsakul (b0085) 2016; 108
Grady, Hussaini, Abdullah (b0050) 2005; 30
J.K. Sethi, D. Deb, M. Malakar, Modeling of a wind turbine farm in presence of wake interactions, 2011 international conference on energy, automation and signal, IEEE, 2011, pp. 1-6.
Gonzalez-Rodriguez, Serrano-Gonzalez, Burgos-Payan (b0010) 2022; 52 102148
Chao-Hui, Yan, Yu-Huang (b0140) 2003; 20
Pookpunt, Ongsakul (b0185) 2013; 55
Hussien, Hassanien, Houssein (b0160) 2020; 52
Kallioras, Lagaros, Karlaftis (b0075) 2015; 88
Feng, Shen (b0190) 2015; 78
Dincer (b0015) 2011; 15
Emami, Noghreh (b0195) 2010; 35
Gamboa, Munda (b0020) 2007; 35
Chen, Li, Li (b0145) 2009; 45
I. Katic, J. Højstrup, N.O. Jensen, A simple model for cluster efficiency, European wind energy association conference and exhibition, A. Raguzzi Rome, Italy, 1986, pp. 407-410.
Wang, Liu, Long (b0080) 2017; 14
Shakoor, Hassan, Raheem (b0115) 2016; 58
J.S. González, M.B. Payán, J.M.R. Santos, An improved evolutive algorithm for large offshore wind farm optimum turbines layout, 2011 IEEE Trondheim Power Tech, IEEE, 2011, pp. 1-6.
Kumar, Reddy (b0095) 2021; 11
Eroğlu, Seçkiner (b0070) 2012; 44
Long, Li, Gu (b0090) 2020
Wang, Zhang, Zhang (b0005) 2021; 170
Patel, Savsani, Patel (b0040) 2017; 158
Kunakote, Sabangban, Kumar (b0130) 2022; 29
Nezamabadi-pour, Rostami-Shahrbabaki, Maghfoori-Farsangi (b0150) 2008; 6
Doğan, Yörükeren (b0175) 2021; 14
Jadhav, Roy (b0110) 2014; 7
R.Y. Nakamura, L.A. Pereira, K.A. Costa, et al., BBA: a binary bat algorithm for feature selection, 2012 25th SIBGRAPI conference on graphics, patterns and images, IEEE, 2012, pp. 291-297.
Yapici, Cetinkaya (b0035) 2019; 78
Liu, Peng, Hua (b0060) 2021; 43 100970
Too, Abdullah, Mohd Saad (b0170) 2019; 8
Gao, Yang, Lin (b0055) 2015; 139
Jiang, Luo, Wei (b0180) 2021; 18
Lundquist (10.1016/j.ecmx.2022.100307_b0025) 2019; 4
Liu (10.1016/j.ecmx.2022.100307_b0060) 2021; 43 100970
Wan (10.1016/j.ecmx.2022.100307_b0065) 2010
Gonzalez-Rodriguez (10.1016/j.ecmx.2022.100307_b0010) 2022; 52 102148
Chao-Hui (10.1016/j.ecmx.2022.100307_b0140) 2003; 20
Wang (10.1016/j.ecmx.2022.100307_b0005) 2021; 170
Yapici (10.1016/j.ecmx.2022.100307_b0035) 2019; 78
Emami (10.1016/j.ecmx.2022.100307_b0195) 2010; 35
Nezamabadi-pour (10.1016/j.ecmx.2022.100307_b0150) 2008; 6
Chen (10.1016/j.ecmx.2022.100307_b0145) 2009; 45
Kumar (10.1016/j.ecmx.2022.100307_b0095) 2021; 11
Feng (10.1016/j.ecmx.2022.100307_b0190) 2015; 78
10.1016/j.ecmx.2022.100307_b0120
Guirguis (10.1016/j.ecmx.2022.100307_b0030) 2016; 179
10.1016/j.ecmx.2022.100307_b0165
Pookpunt (10.1016/j.ecmx.2022.100307_b0085) 2016; 108
Gamboa (10.1016/j.ecmx.2022.100307_b0020) 2007; 35
10.1016/j.ecmx.2022.100307_b0125
10.1016/j.ecmx.2022.100307_b0100
Doğan (10.1016/j.ecmx.2022.100307_b0175) 2021; 14
Jadhav (10.1016/j.ecmx.2022.100307_b0110) 2014; 7
Kallioras (10.1016/j.ecmx.2022.100307_b0075) 2015; 88
Kim (10.1016/j.ecmx.2022.100307_b0105) 2012; 3
Eroğlu (10.1016/j.ecmx.2022.100307_b0070) 2012; 44
Too (10.1016/j.ecmx.2022.100307_b0170) 2019; 8
Patel (10.1016/j.ecmx.2022.100307_b0040) 2017; 158
Gao (10.1016/j.ecmx.2022.100307_b0055) 2015; 139
Cheng (10.1016/j.ecmx.2022.100307_b0135) 2014; 139
Jiang (10.1016/j.ecmx.2022.100307_b0180) 2021; 18
Wang (10.1016/j.ecmx.2022.100307_b0080) 2017; 14
Long (10.1016/j.ecmx.2022.100307_b0090) 2020
Mosetti (10.1016/j.ecmx.2022.100307_b0045) 1994; 51
Hussien (10.1016/j.ecmx.2022.100307_b0160) 2020; 52
Grady (10.1016/j.ecmx.2022.100307_b0050) 2005; 30
Shakoor (10.1016/j.ecmx.2022.100307_b0115) 2016; 58
Kunakote (10.1016/j.ecmx.2022.100307_b0130) 2022; 29
10.1016/j.ecmx.2022.100307_b0155
Pookpunt (10.1016/j.ecmx.2022.100307_b0185) 2013; 55
Dincer (10.1016/j.ecmx.2022.100307_b0015) 2011; 15
References_xml – volume: 14
  start-page: 1040
  year: 2017
  end-page: 1054
  ident: b0080
  article-title: Differential evolution with a new encoding mechanism for optimizing wind farm layout
  publication-title: IEEE Trans Ind Inf
– volume: 20
  start-page: 97
  year: 2003
  end-page: 100
  ident: b0140
  article-title: Genetic algorithm based on complex-valued encoding
  publication-title: Control Theory Appl
– volume: 139
  start-page: 89
  year: 2015
  end-page: 99
  ident: b0055
  article-title: Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore
  publication-title: J Wind Eng Ind Aerodyn
– volume: 58
  start-page: 1048
  year: 2016
  end-page: 1059
  ident: b0115
  article-title: Wake effect modeling: a review of wind farm layout optimization using Jensen׳ s model
  publication-title: Renew Sustain Energy Rev
– volume: 45
  start-page: 59
  year: 2009
  end-page: 61
  ident: b0145
  article-title: Particle swarm optimization based on complex-valued encoding and application in function optimization
  publication-title: Comput Eng Appl
– reference: R.Y. Nakamura, L.A. Pereira, K.A. Costa, et al., BBA: a binary bat algorithm for feature selection, 2012 25th SIBGRAPI conference on graphics, patterns and images, IEEE, 2012, pp. 291-297.
– reference: J.S. González, M.B. Payán, J.M.R. Santos, An improved evolutive algorithm for large offshore wind farm optimum turbines layout, 2011 IEEE Trondheim Power Tech, IEEE, 2011, pp. 1-6.
– volume: 35
  start-page: 1559
  year: 2010
  end-page: 1564
  ident: b0195
  article-title: New approach on optimization in placement of wind turbines within wind farm by genetic algorithms
  publication-title: Renew Energy
– volume: 108
  start-page: 160
  year: 2016
  end-page: 180
  ident: b0085
  article-title: Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai district, Southern Thailand
  publication-title: Energy Convers Manage
– volume: 29
  start-page: 717
  year: 2022
  end-page: 730
  ident: b0130
  article-title: Comparative performance of twelve metaheuristics for wind farm layout optimisation
  publication-title: Arch Comput Methods Eng
– volume: 11
  start-page: 1939
  year: 2021
  end-page: 1946
  ident: b0095
  article-title: The sparrow search algorithm for optimum position of wind turbine on a wind farm
  publication-title: Int J Renew Energy Res (IJRER)
– volume: 4
  start-page: 26
  year: 2019
  end-page: 34
  ident: b0025
  article-title: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
  publication-title: Nat Energy
– volume: 43 100970
  year: 2021
  ident: b0060
  article-title: Wind farm optimization considering non-uniformly distributed turbulence intensity
  publication-title: Sustain Energy Technol Assess
– volume: 7
  start-page: 123
  year: 2014
  end-page: 135
  ident: b0110
  article-title: Effect of turbine wake on optimal generation schedule and transmission losses in wind integrated power system
  publication-title: Sustain Energy Technol Assess
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: b0135
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput Struct
– start-page: 2227
  year: 2010
  end-page: 2232
  ident: b0065
  article-title: Particle swarm optimization based on Gaussian mutation and its application to wind farm micro-siting, 49th IEEE conference on decision and control (CDC)
  publication-title: IEEE
– volume: 30
  start-page: 259
  year: 2005
  end-page: 270
  ident: b0050
  article-title: Placement of wind turbines using genetic algorithms
  publication-title: Renew Energy
– start-page: 208 118310
  year: 2020
  ident: b0090
  article-title: A data-driven evolutionary algorithm for wind farm layout optimization
  publication-title: Energy
– volume: 35
  start-page: 1564
  year: 2007
  end-page: 1583
  ident: b0020
  article-title: The problem of windfarm location: a social multi-criteria evaluation framework
  publication-title: Energy Policy
– volume: 158
  start-page: 81
  year: 2017
  end-page: 94
  ident: b0040
  article-title: Layout optimization of a wind farm to maximize the power output using enhanced teaching learning based optimization technique
  publication-title: J Cleaner Prod
– volume: 78
  start-page: 545
  year: 2019
  end-page: 568
  ident: b0035
  article-title: A new meta-heuristic optimizer: pathfinder algorithm
  publication-title: Appl Soft Comput
– volume: 6
  start-page: 21
  year: 2008
  end-page: 32
  ident: b0150
  article-title: Binary particle swarm optimization: challenges and new solutions
  publication-title: CSI J Comput Sci Eng
– volume: 52
  start-page: 945
  year: 2020
  end-page: 959
  ident: b0160
  article-title: New binary whale optimization algorithm for discrete optimization problems
  publication-title: Eng Optim
– volume: 3
  start-page: 274
  year: 2012
  end-page: 282
  ident: b0105
  article-title: Simulation and estimation of reliability in a wind farm considering the wake effect
  publication-title: IEEE Trans Sustain Energy
– volume: 78
  start-page: 182
  year: 2015
  end-page: 192
  ident: b0190
  article-title: Solving the wind farm layout optimization problem using random search algorithm
  publication-title: Renew Energy
– reference: S. Reddy, L.K. Panwar, B. Panigrahi, et al., Optimal scheduling of uncertain wind energy and demand response in unit commitment using binary grey wolf optimizer (BGWO), 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), IEEE, 2016, pp. 344-349.
– volume: 52 102148
  year: 2022
  ident: b0010
  article-title: Multi-objective optimization of a uniformly distributed offshore wind farm considering both economic factors and visual impact
  publication-title: Sustain Energy Technol Assess
– volume: 88
  start-page: 8
  year: 2015
  end-page: 20
  ident: b0075
  article-title: Optimum layout design of onshore wind farms considering stochastic loading
  publication-title: Adv Eng Software
– volume: 15
  start-page: 5135
  year: 2011
  end-page: 5142
  ident: b0015
  article-title: The analysis on wind energy electricity generation status, potential and policies in the world
  publication-title: Renew Sustain Energy Rev
– reference: J.K. Sethi, D. Deb, M. Malakar, Modeling of a wind turbine farm in presence of wake interactions, 2011 international conference on energy, automation and signal, IEEE, 2011, pp. 1-6.
– volume: 18
  start-page: 3813
  year: 2021
  end-page: 3854
  ident: b0180
  article-title: An efficient binary Gradient-based optimizer for feature selection
  publication-title: Math Biosci Eng
– volume: 14
  start-page: 6613
  year: 2021
  end-page: 6623
  ident: b0175
  article-title: Binary pathfinder algorithm for bus splitting optimisation problem
  publication-title: IET Gener Transm Distrib
– volume: 179
  start-page: 110
  year: 2016
  end-page: 123
  ident: b0030
  article-title: Toward efficient optimization of wind farm layouts: utilizing exact gradient information
  publication-title: Appl Energy
– volume: 44
  start-page: 53
  year: 2012
  end-page: 62
  ident: b0070
  article-title: Design of wind farm layout using ant colony algorithm
  publication-title: Renew Energy
– volume: 170
  start-page: 897
  year: 2021
  end-page: 904
  ident: b0005
  article-title: The relationship of renewable energy consumption to financial development and economic growth in China
  publication-title: Renew Energy
– volume: 55
  start-page: 266
  year: 2013
  end-page: 276
  ident: b0185
  article-title: Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients
  publication-title: Renew Energy
– reference: I. Katic, J. Højstrup, N.O. Jensen, A simple model for cluster efficiency, European wind energy association conference and exhibition, A. Raguzzi Rome, Italy, 1986, pp. 407-410.
– volume: 51
  start-page: 105
  year: 1994
  end-page: 116
  ident: b0045
  article-title: Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
  publication-title: J Wind Eng Ind Aerodyn
– volume: 8
  start-page: 1130
  year: 2019
  ident: b0170
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electronics
– volume: 158
  start-page: 81
  year: 2017
  ident: 10.1016/j.ecmx.2022.100307_b0040
  article-title: Layout optimization of a wind farm to maximize the power output using enhanced teaching learning based optimization technique
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2017.04.132
– volume: 15
  start-page: 5135
  issue: 9
  year: 2011
  ident: 10.1016/j.ecmx.2022.100307_b0015
  article-title: The analysis on wind energy electricity generation status, potential and policies in the world
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.07.042
– volume: 88
  start-page: 8
  year: 2015
  ident: 10.1016/j.ecmx.2022.100307_b0075
  article-title: Optimum layout design of onshore wind farms considering stochastic loading
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2015.05.002
– volume: 55
  start-page: 266
  year: 2013
  ident: 10.1016/j.ecmx.2022.100307_b0185
  article-title: Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.12.005
– volume: 179
  start-page: 110
  year: 2016
  ident: 10.1016/j.ecmx.2022.100307_b0030
  article-title: Toward efficient optimization of wind farm layouts: utilizing exact gradient information
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.101
– start-page: 208 118310
  year: 2020
  ident: 10.1016/j.ecmx.2022.100307_b0090
  article-title: A data-driven evolutionary algorithm for wind farm layout optimization
  publication-title: Energy
– volume: 3
  start-page: 274
  issue: 2
  year: 2012
  ident: 10.1016/j.ecmx.2022.100307_b0105
  article-title: Simulation and estimation of reliability in a wind farm considering the wake effect
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2011.2174260
– volume: 20
  start-page: 97
  issue: 1
  year: 2003
  ident: 10.1016/j.ecmx.2022.100307_b0140
  article-title: Genetic algorithm based on complex-valued encoding
  publication-title: Control Theory Appl
– volume: 170
  start-page: 897
  year: 2021
  ident: 10.1016/j.ecmx.2022.100307_b0005
  article-title: The relationship of renewable energy consumption to financial development and economic growth in China
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.02.038
– ident: 10.1016/j.ecmx.2022.100307_b0100
  doi: 10.1109/PTC.2011.6019366
– volume: 52 102148
  year: 2022
  ident: 10.1016/j.ecmx.2022.100307_b0010
  article-title: Multi-objective optimization of a uniformly distributed offshore wind farm considering both economic factors and visual impact
  publication-title: Sustain Energy Technol Assess
– volume: 78
  start-page: 545
  year: 2019
  ident: 10.1016/j.ecmx.2022.100307_b0035
  article-title: A new meta-heuristic optimizer: pathfinder algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.03.012
– volume: 44
  start-page: 53
  year: 2012
  ident: 10.1016/j.ecmx.2022.100307_b0070
  article-title: Design of wind farm layout using ant colony algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.12.013
– volume: 30
  start-page: 259
  issue: 2
  year: 2005
  ident: 10.1016/j.ecmx.2022.100307_b0050
  article-title: Placement of wind turbines using genetic algorithms
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2004.05.007
– volume: 78
  start-page: 182
  year: 2015
  ident: 10.1016/j.ecmx.2022.100307_b0190
  article-title: Solving the wind farm layout optimization problem using random search algorithm
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.01.005
– ident: 10.1016/j.ecmx.2022.100307_b0165
  doi: 10.1109/UPCON.2016.7894677
– volume: 52
  start-page: 945
  issue: 6
  year: 2020
  ident: 10.1016/j.ecmx.2022.100307_b0160
  article-title: New binary whale optimization algorithm for discrete optimization problems
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2019.1624740
– volume: 108
  start-page: 160
  year: 2016
  ident: 10.1016/j.ecmx.2022.100307_b0085
  article-title: Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai district, Southern Thailand
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.11.002
– volume: 14
  start-page: 1040
  issue: 3
  year: 2017
  ident: 10.1016/j.ecmx.2022.100307_b0080
  article-title: Differential evolution with a new encoding mechanism for optimizing wind farm layout
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2743761
– volume: 35
  start-page: 1559
  issue: 7
  year: 2010
  ident: 10.1016/j.ecmx.2022.100307_b0195
  article-title: New approach on optimization in placement of wind turbines within wind farm by genetic algorithms
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.11.026
– volume: 6
  start-page: 21
  issue: 1
  year: 2008
  ident: 10.1016/j.ecmx.2022.100307_b0150
  article-title: Binary particle swarm optimization: challenges and new solutions
  publication-title: CSI J Comput Sci Eng
– volume: 7
  start-page: 123
  year: 2014
  ident: 10.1016/j.ecmx.2022.100307_b0110
  article-title: Effect of turbine wake on optimal generation schedule and transmission losses in wind integrated power system
  publication-title: Sustain Energy Technol Assess
– volume: 58
  start-page: 1048
  year: 2016
  ident: 10.1016/j.ecmx.2022.100307_b0115
  article-title: Wake effect modeling: a review of wind farm layout optimization using Jensen׳ s model
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.229
– ident: 10.1016/j.ecmx.2022.100307_b0155
  doi: 10.1109/SIBGRAPI.2012.47
– volume: 4
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.ecmx.2022.100307_b0025
  article-title: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0281-2
– volume: 11
  start-page: 1939
  issue: 4
  year: 2021
  ident: 10.1016/j.ecmx.2022.100307_b0095
  article-title: The sparrow search algorithm for optimum position of wind turbine on a wind farm
  publication-title: Int J Renew Energy Res (IJRER)
– volume: 29
  start-page: 717
  issue: 1
  year: 2022
  ident: 10.1016/j.ecmx.2022.100307_b0130
  article-title: Comparative performance of twelve metaheuristics for wind farm layout optimisation
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-021-09586-7
– volume: 35
  start-page: 1564
  issue: 3
  year: 2007
  ident: 10.1016/j.ecmx.2022.100307_b0020
  article-title: The problem of windfarm location: a social multi-criteria evaluation framework
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.04.021
– volume: 43 100970
  year: 2021
  ident: 10.1016/j.ecmx.2022.100307_b0060
  article-title: Wind farm optimization considering non-uniformly distributed turbulence intensity
  publication-title: Sustain Energy Technol Assess
– volume: 45
  start-page: 59
  issue: 10
  year: 2009
  ident: 10.1016/j.ecmx.2022.100307_b0145
  article-title: Particle swarm optimization based on complex-valued encoding and application in function optimization
  publication-title: Comput Eng Appl
– start-page: 2227
  year: 2010
  ident: 10.1016/j.ecmx.2022.100307_b0065
  article-title: Particle swarm optimization based on Gaussian mutation and its application to wind farm micro-siting, 49th IEEE conference on decision and control (CDC)
  publication-title: IEEE
– volume: 8
  start-page: 1130
  issue: 10
  year: 2019
  ident: 10.1016/j.ecmx.2022.100307_b0170
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electronics
  doi: 10.3390/electronics8101130
– volume: 139
  start-page: 89
  year: 2015
  ident: 10.1016/j.ecmx.2022.100307_b0055
  article-title: Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2015.01.018
– volume: 18
  start-page: 3813
  year: 2021
  ident: 10.1016/j.ecmx.2022.100307_b0180
  article-title: An efficient binary Gradient-based optimizer for feature selection
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2021192
– ident: 10.1016/j.ecmx.2022.100307_b0120
– volume: 139
  start-page: 98
  year: 2014
  ident: 10.1016/j.ecmx.2022.100307_b0135
  article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 14
  start-page: 6613
  issue: 26
  year: 2021
  ident: 10.1016/j.ecmx.2022.100307_b0175
  article-title: Binary pathfinder algorithm for bus splitting optimisation problem
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2020.0729
– volume: 51
  start-page: 105
  issue: 1
  year: 1994
  ident: 10.1016/j.ecmx.2022.100307_b0045
  article-title: Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/0167-6105(94)90080-9
– ident: 10.1016/j.ecmx.2022.100307_b0125
  doi: 10.1109/ICEAS.2011.6147144
SSID ssj0002315641
Score 2.2750652
Snippet •A discrete complex-valued code pathfinder algorithm (DCPFA) has been proposed.•The DCPFA algorithm’s exploration and exploitation abilities were improved.•The...
In wind farm planning, it is necessary to optimize the location of turbines to reduce the influence of eddy currents between each other and generate more...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100307
SubjectTerms Discrete complex-valued code pathfinder algorithm
Metaheuristic
Pathfinder algorithm
Wind farm layout optimization
Title Discrete complex-valued code pathfinder algorithm for wind farm layout optimization problem
URI https://dx.doi.org/10.1016/j.ecmx.2022.100307
https://doaj.org/article/826b06b77f354946a421aba6a110a5f6
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002315641
  issn: 2590-1745
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1745
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002315641
  issn: 2590-1745
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx7YUERix0kz8mjFABUDSJUYrLNjQ6qmRSGFsvDbOScpygQLUuLBSuzou8T3nXL-jpBTXyMH9jXz0LnGXpimzAMIrJcawAUzTI2xlYjrbTwc9kaj5L5V6svlhNXywDVw50h_lR-pOLYcQ5kwgpAFoCAC9FsgbCW27cdJK5gaVyIuTgTFRVtI730PabdodszUyV1G5wsMDhlzWQLc1ZJteaVKvL_lnFoOZ7BJNhqmSC_qJ9wiK2a6TdZb-oE75Ok6w68eaS-tMsPNwnPa3SalbqM6dcWG3S9pU1CYPM-KrHzJKXJU-oGd1EKR0wl8zuYlneG6kTcbMmlTYmaXPA76D1c3XlMtwdMsRpwDAG6NsCLWqQDmyghrFfg6SSBFJ2x6YYKnYnhwrX2FGHGNreBGIAc0fI90prOp2SeUA7jbIqs5hCH0EqWU1UynOoxBi6RLzpZoyddaFEMus8XG0mErHbayxrZLLh2gP1c6QeuqA80sGzPLv8zcJWJpDtlwg9rn41DZL5Mf_Mfkh2TNDVlnsRyRTlnMzTFZ1e9l9lacVG8etndf_W-Zo92q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+complex-valued+code+pathfinder+algorithm+for+wind+farm+layout+optimization+problem&rft.jtitle=Energy+conversion+and+management.+X&rft.au=Li%2C+Ning&rft.au=Zhou%2C+Yongquan&rft.au=Luo%2C+Qifang&rft.au=Huang%2C+Huajuan&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=2590-1745&rft.eissn=2590-1745&rft.volume=16&rft_id=info:doi/10.1016%2Fj.ecmx.2022.100307&rft.externalDocID=S2590174522001301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1745&client=summon