Detection of Forest Burned Area Using a Spatiotemporal Algorithm Based on Spectral Index Time Series Data

Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and multiscale spatial features is challenging. In this study, we propose a novel burned area detection algorithm based on the CL-UNet (ConvLSTM-U-Ne...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 28971 - 28985
Main Authors: Li, Yunhao, Liu, Jinxiu, Maeda, Eduardo Eiji, Li, Xuecao, Pellikka, Petri, Heiskanen, Janne
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and multiscale spatial features is challenging. In this study, we propose a novel burned area detection algorithm based on the CL-UNet (ConvLSTM-U-Net) model. CL-UNet integrates convolutional long short-term memory (ConvLSTM) units with a multiscale encoder-decoder architecture to capture both spatial and temporal dependencies inherent in satellite image time series. The model is trained to forecast spectral index values for the target year, and discrepancies between the predicted and observed values are used to identify anomalous changes. Burned areas are detected using a root mean square error (RMSE)-based thresholding method, which provides a robust mathematical foundation for selecting the optimal threshold. Using MODIS products with a temporal coverage spanning up to 9 years, we constructed spectral index time series based on multiple spectral indices. Experimental results from two large-scale forest fires demonstrate that Burn Area Index (BAI) exhibits the most qualified and stable performance. Under various conditions, the Recall, Precision, and F1 score of the model using the BAI time series as input data all exceed 80%. The results further indicate that CL-UNet achieves outstanding performance in both study areas. When utilizing the BAI time series as input, the Recall, Precision, and F1 score of CL-UNet are 1% to 10% higher than those of other models. The proposed algorithm shows strong potential for general spatiotemporal disturbance detection tasks in remote sensing applications beyond wildfire monitoring.
AbstractList Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and multiscale spatial features is challenging. In this study, we propose a novel burned area detection algorithm based on the CL-UNet (ConvLSTM-U-Net) model. CL-UNet integrates convolutional long short-term memory (ConvLSTM) units with a multiscale encoder-decoder architecture to capture both spatial and temporal dependencies inherent in satellite image time series. The model is trained to forecast spectral index values for the target year, and discrepancies between the predicted and observed values are used to identify anomalous changes. Burned areas are detected using a root mean square error (RMSE)-based thresholding method, which provides a robust mathematical foundation for selecting the optimal threshold. Using MODIS products with a temporal coverage spanning up to 9 years, we constructed spectral index time series based on multiple spectral indices. Experimental results from two large-scale forest fires demonstrate that Burn Area Index (BAI) exhibits the most qualified and stable performance. Under various conditions, the Recall, Precision, and F1 score of the model using the BAI time series as input data all exceed 80%. The results further indicate that CL-UNet achieves outstanding performance in both study areas. When utilizing the BAI time series as input, the Recall, Precision, and F1 score of CL-UNet are 1% to 10% higher than those of other models. The proposed algorithm shows strong potential for general spatiotemporal disturbance detection tasks in remote sensing applications beyond wildfire monitoring.
Author Heiskanen, Janne
Li, Yunhao
Liu, Jinxiu
Maeda, Eduardo Eiji
Li, Xuecao
Pellikka, Petri
Author_xml – sequence: 1
  givenname: Yunhao
  orcidid: 0009-0005-0732-6358
  surname: Li
  fullname: Li, Yunhao
  email: yunhaoli@email.cugb.edu.cn
  organization: School of Artificial Intelligence, China University of Geosciences, Beijing, China
– sequence: 2
  givenname: Jinxiu
  orcidid: 0009-0001-3820-8195
  surname: Liu
  fullname: Liu, Jinxiu
  email: jinxiuliu@cugb.edu.cn
  organization: School of Artificial Intelligence, China University of Geosciences, Beijing, China
– sequence: 3
  givenname: Eduardo Eiji
  orcidid: 0000-0001-7932-1824
  surname: Maeda
  fullname: Maeda, Eduardo Eiji
  email: eduardo.maeda@helsinki.fi
  organization: Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
– sequence: 4
  givenname: Xuecao
  orcidid: 0000-0002-6942-0746
  surname: Li
  fullname: Li, Xuecao
  email: xuecaoli@cau.edu.cn
  organization: College of Land Science and Technology, China Agricultural University, Beijing, China
– sequence: 5
  givenname: Petri
  surname: Pellikka
  fullname: Pellikka, Petri
  email: petri.pellikka@helsinki.fi
  organization: University of Helsinki, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
– sequence: 6
  givenname: Janne
  orcidid: 0000-0002-3899-8860
  surname: Heiskanen
  fullname: Heiskanen, Janne
  email: janne.heiskanen@helsinki.fi
  organization: Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
BookMark eNpFUctu2zAQJIoUqJP2C9oDgZ7l8KUHj07SNA4CFKjsM7GkVi4NW1RJBUj_vnRkJKfF7s7MDnYuycUQBiTkK2dLzpm-fmw3q9_tUjBRLmUldKWrD2QheMkLXsrygiy4lrrgiqlP5DKlPWOVqLVcEH-HE7rJh4GGnt6HiGmiN89xwI6uIgLdJj_sKNB2hIya8DiGCAe6OuxC9NOfI72BlLGZ345Z6LRbDx2-0I0_Im0xekz0Dib4TD72cEj45VyvyPb-x-b2oXj69XN9u3oqnKirqtBoGRPaKatFAw1WitfOaZF7ay3XlkHnGqYRpOWVbHSvnHI961ALrRjIK7KedbsAezNGf4T4zwTw5nUQ4s5AnLw7oAHblxZk3QvVqIZLqMvS1bYUnAttZZe1vs9aYwx_n_NrzD7k32T7Rma3ikshZEbJGeViSCli_3aVM3PKx8z5mFM-5pxPZn2bWR4R3xlcSCZkI_8Dcj6New
CODEN IJSTHZ
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2025.3629696
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Forestry
EISSN 2151-1535
EndPage 28985
ExternalDocumentID oai_doaj_org_article_abf5ba37f2484813a755c7b521129b3d
10_1109_JSTARS_2025_3629696
11230238
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42401439
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2023YFD1501300
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c2766-9eb0029c4b928a8e6417cc924b9bbb19b0adc809ea3b16389f4c4cf0de92940a3
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Mon Dec 01 19:30:46 EST 2025
Sat Nov 29 13:42:08 EST 2025
Sat Nov 29 06:54:32 EST 2025
Wed Dec 10 09:47:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2766-9eb0029c4b928a8e6417cc924b9bbb19b0adc809ea3b16389f4c4cf0de92940a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6942-0746
0009-0001-3820-8195
0000-0002-3899-8860
0000-0001-7932-1824
0009-0005-0732-6358
OpenAccessLink https://doaj.org/article/abf5ba37f2484813a755c7b521129b3d
PQID 3276413223
PQPubID 75722
PageCount 15
ParticipantIDs proquest_journals_3276413223
crossref_primary_10_1109_JSTARS_2025_3629696
ieee_primary_11230238
doaj_primary_oai_doaj_org_article_abf5ba37f2484813a755c7b521129b3d
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0062793
Score 2.3751948
Snippet Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 28971
SubjectTerms Algorithms
Burned area
convolutional long short-term memory (ConvLSTM)
Convolutional neural networks
Data models
Disaster management
Ecological monitoring
Forest fire detection
Forest fires
Forestry
Indexes
Long short-term memory
Mathematical models
Monitoring
near real-time disturbance detection
Predictive models
Recall
Remote sensing
Root-mean-square errors
satellite image time series
Satellite imagery
Spatiotemporal phenomena
Springs
Time series
Time series analysis
Wildfires
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RClAvtJSiLrSVDxxJm42d2D52-75UFQWpN8tPuhLsot0UiX_PjOMFVRUHblFkJ5HHj28mM98H8EEliyjYqapNUVRChFgppWMVuPLoawtv60FsQl5fq7s7fVOK1XMtTIwxJ5_FQ7rM__LD3D9QqOwIsQFp3Kg1WJOyG4q1Vttu18jMsIuARFfEGVMohsa1PsI5fvzpFp3Bpj3EDZsIYR4dQ5mtv8irPNmT80Fzvvmfn7gFrwqiZMfDFHgNz-JsG16S5CbpuG3Di4ss3vvrDUxPY58zr2ZsntjQgk0oqBmwe7Qs5w8wy25zmnVhrcJHf_s6X0z7--9sgmdeYNifZOspRsKuiG2RUSEJo0BbXLJT29sd-HJ-9vnksipSC5VvZNdVmiSEGu2F042yKnZiLL1H38xp59xYu9oGr2odLXeE4HQSXvhUh4jwStSWv4X12XwWd4ElLrQMoZG1sCKhA-a7qFyDsDKge8ntCD6uRt78GBg1TPZEam0GQxkylCmGGsGErPOnKdFh5xs47KasLmNdap3lMjWC5AG4lW3rpUNognDG8TCCHTLV3_cVK41gb2VsU9bu0nAcEUFOOn_3j27vYYM-cYjE7MF6v3iI-_Dc_-yny8VBnpa_AcAm3fc
  priority: 102
  providerName: IEEE
Title Detection of Forest Burned Area Using a Spatiotemporal Algorithm Based on Spectral Index Time Series Data
URI https://ieeexplore.ieee.org/document/11230238
https://www.proquest.com/docview/3276413223
https://doaj.org/article/abf5ba37f2484813a755c7b521129b3d
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELWqqJW4IGhBpATkA8cucdbetX0kDSlcECpF4mb5EyJBgpItEv--M95NAfXApdfVer074_XMG43fI-RIJQtZsFNFlaIohAixUErHInDlAWsLb1krNiEvLtTNjb58JfWFPWEtPXBruKF1qXKWy1QKZH7nVlaVlw6iDkQqxwPuvkzqNZhq9-C6lJluF7ITXSCBTMc3NGJ6CAv-5OcVIMOyOobdG9lh3sSkTN3faa38s0HnqDPdIptdukhP2tfcJh_i_DP59CPL8T5_IbNJbHIv1ZwuEkWZzVVDx1imDDAmWpo7AqilV7lxuuOhgufd3y6Ws-bugY4higUK41GIHqse9Bz5EykeDaFYOosrOrGN3SHX09Nf38-KTjyh8KWs60KjKFCpvXC6VFbFWoyk94C2nHbOjbRjNnjFdLTcYU6mk_DCJxYiJEyCWb5LevPFPO4RmrjQMoRSMmFFAkjl66hcCYliAMDIbZ98W5vPPLYcGSZjC6ZNa22D1jadtftkjCb-eysSXOcL4HbTud285_Y-2UEHvcwHERjTjz4ZrD1mur9xZThYRCDs5l__x9z7ZAO_py3EDEivWf6OB-Sjf2pmq-VhXoiH-SDhH5ib3aQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BgdILj1LEQgEfOJI2azuJfey2lFaUFaJF6s3yk64Eu2g3ReLfM-N4QQhx4BZFdhJ5_PhmMvN9AK9UsoiCnaqaFGUlZYiVUjpWQSiPvrb0th7EJrrpVF1e6g-lWD3XwsQYc_JZ3KPL_C8_LPw1hcr2ERuQxo26CbcaKXk9lGutN96Wd5ljFyGJrog1ppAMjWu9j7P84OM5uoO82cMtmyhh_jiIMl9_EVj5a1fOR83x_f_8yAdwr2BKdjBMgodwI863YZNEN0nJbRvuvM3yvT8ewewo9jn3as4WiQ0t2ITCmgG7R8tyBgGz7DwnWhfeKnz0l8-L5ay_-someOoFhv1JuJ6iJOyU-BYZlZIwCrXFFTuyvd2BT8dvLg5PqiK2UHnetW2lSUSIay-d5sqq2Mpx5z16Z04758ba1TZ4VetohSMMp5P00qc6RARYsrbiMWzMF_P4BFgSUnch8K6WViZ0wXwbleMILAM6mMKO4PV65M23gVPDZF-k1mYwlCFDmWKoEUzIOr-aEiF2voHDbsr6MtalxlnRJS5JIEDYrml85xCcIKBxIoxgh0z1-33FSiPYXRvblNW7MgJHRJKbLp7-o9tLuHty8f7MnJ1O3z2DLfrcIS6zCxv98jo-h9v-ez9bLV_kKfoTdAfhPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Forest+Burned+Area+Using+a+Spatiotemporal+Algorithm+Based+on+Spectral+Index+Time+Series+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Li%2C+Yunhao&rft.au=Liu%2C+Jinxiu&rft.au=Maeda%2C+Eduardo+Eiji&rft.au=Li%2C+Xuecao&rft.date=2025&rft.issn=1939-1404&rft.eissn=2151-1535&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FJSTARS.2025.3629696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3629696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon