Detection of Forest Burned Area Using a Spatiotemporal Algorithm Based on Spectral Index Time Series Data
Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and multiscale spatial features is challenging. In this study, we propose a novel burned area detection algorithm based on the CL-UNet (ConvLSTM-U-Ne...
Saved in:
| Published in: | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 28971 - 28985 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and multiscale spatial features is challenging. In this study, we propose a novel burned area detection algorithm based on the CL-UNet (ConvLSTM-U-Net) model. CL-UNet integrates convolutional long short-term memory (ConvLSTM) units with a multiscale encoder-decoder architecture to capture both spatial and temporal dependencies inherent in satellite image time series. The model is trained to forecast spectral index values for the target year, and discrepancies between the predicted and observed values are used to identify anomalous changes. Burned areas are detected using a root mean square error (RMSE)-based thresholding method, which provides a robust mathematical foundation for selecting the optimal threshold. Using MODIS products with a temporal coverage spanning up to 9 years, we constructed spectral index time series based on multiple spectral indices. Experimental results from two large-scale forest fires demonstrate that Burn Area Index (BAI) exhibits the most qualified and stable performance. Under various conditions, the Recall, Precision, and F1 score of the model using the BAI time series as input data all exceed 80%. The results further indicate that CL-UNet achieves outstanding performance in both study areas. When utilizing the BAI time series as input, the Recall, Precision, and F1 score of CL-UNet are 1% to 10% higher than those of other models. The proposed algorithm shows strong potential for general spatiotemporal disturbance detection tasks in remote sensing applications beyond wildfire monitoring. |
|---|---|
| AbstractList | Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and multiscale spatial features is challenging. In this study, we propose a novel burned area detection algorithm based on the CL-UNet (ConvLSTM-U-Net) model. CL-UNet integrates convolutional long short-term memory (ConvLSTM) units with a multiscale encoder-decoder architecture to capture both spatial and temporal dependencies inherent in satellite image time series. The model is trained to forecast spectral index values for the target year, and discrepancies between the predicted and observed values are used to identify anomalous changes. Burned areas are detected using a root mean square error (RMSE)-based thresholding method, which provides a robust mathematical foundation for selecting the optimal threshold. Using MODIS products with a temporal coverage spanning up to 9 years, we constructed spectral index time series based on multiple spectral indices. Experimental results from two large-scale forest fires demonstrate that Burn Area Index (BAI) exhibits the most qualified and stable performance. Under various conditions, the Recall, Precision, and F1 score of the model using the BAI time series as input data all exceed 80%. The results further indicate that CL-UNet achieves outstanding performance in both study areas. When utilizing the BAI time series as input, the Recall, Precision, and F1 score of CL-UNet are 1% to 10% higher than those of other models. The proposed algorithm shows strong potential for general spatiotemporal disturbance detection tasks in remote sensing applications beyond wildfire monitoring. |
| Author | Heiskanen, Janne Li, Yunhao Liu, Jinxiu Maeda, Eduardo Eiji Li, Xuecao Pellikka, Petri |
| Author_xml | – sequence: 1 givenname: Yunhao orcidid: 0009-0005-0732-6358 surname: Li fullname: Li, Yunhao email: yunhaoli@email.cugb.edu.cn organization: School of Artificial Intelligence, China University of Geosciences, Beijing, China – sequence: 2 givenname: Jinxiu orcidid: 0009-0001-3820-8195 surname: Liu fullname: Liu, Jinxiu email: jinxiuliu@cugb.edu.cn organization: School of Artificial Intelligence, China University of Geosciences, Beijing, China – sequence: 3 givenname: Eduardo Eiji orcidid: 0000-0001-7932-1824 surname: Maeda fullname: Maeda, Eduardo Eiji email: eduardo.maeda@helsinki.fi organization: Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland – sequence: 4 givenname: Xuecao orcidid: 0000-0002-6942-0746 surname: Li fullname: Li, Xuecao email: xuecaoli@cau.edu.cn organization: College of Land Science and Technology, China Agricultural University, Beijing, China – sequence: 5 givenname: Petri surname: Pellikka fullname: Pellikka, Petri email: petri.pellikka@helsinki.fi organization: University of Helsinki, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland – sequence: 6 givenname: Janne orcidid: 0000-0002-3899-8860 surname: Heiskanen fullname: Heiskanen, Janne email: janne.heiskanen@helsinki.fi organization: Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland |
| BookMark | eNpFUctu2zAQJIoUqJP2C9oDgZ7l8KUHj07SNA4CFKjsM7GkVi4NW1RJBUj_vnRkJKfF7s7MDnYuycUQBiTkK2dLzpm-fmw3q9_tUjBRLmUldKWrD2QheMkLXsrygiy4lrrgiqlP5DKlPWOVqLVcEH-HE7rJh4GGnt6HiGmiN89xwI6uIgLdJj_sKNB2hIya8DiGCAe6OuxC9NOfI72BlLGZ345Z6LRbDx2-0I0_Im0xekz0Dib4TD72cEj45VyvyPb-x-b2oXj69XN9u3oqnKirqtBoGRPaKatFAw1WitfOaZF7ay3XlkHnGqYRpOWVbHSvnHI961ALrRjIK7KedbsAezNGf4T4zwTw5nUQ4s5AnLw7oAHblxZk3QvVqIZLqMvS1bYUnAttZZe1vs9aYwx_n_NrzD7k32T7Rma3ikshZEbJGeViSCli_3aVM3PKx8z5mFM-5pxPZn2bWR4R3xlcSCZkI_8Dcj6New |
| CODEN | IJSTHZ |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2025.3629696 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Forestry |
| EISSN | 2151-1535 |
| EndPage | 28985 |
| ExternalDocumentID | oai_doaj_org_article_abf5ba37f2484813a755c7b521129b3d 10_1109_JSTARS_2025_3629696 11230238 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42401439 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2023YFD1501300 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c2766-9eb0029c4b928a8e6417cc924b9bbb19b0adc809ea3b16389f4c4cf0de92940a3 |
| IEDL.DBID | DOA |
| ISSN | 1939-1404 |
| IngestDate | Mon Dec 01 19:30:46 EST 2025 Sat Nov 29 13:42:08 EST 2025 Sat Nov 29 06:54:32 EST 2025 Wed Dec 10 09:47:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2766-9eb0029c4b928a8e6417cc924b9bbb19b0adc809ea3b16389f4c4cf0de92940a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6942-0746 0009-0001-3820-8195 0000-0002-3899-8860 0000-0001-7932-1824 0009-0005-0732-6358 |
| OpenAccessLink | https://doaj.org/article/abf5ba37f2484813a755c7b521129b3d |
| PQID | 3276413223 |
| PQPubID | 75722 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3276413223 crossref_primary_10_1109_JSTARS_2025_3629696 ieee_primary_11230238 doaj_primary_oai_doaj_org_article_abf5ba37f2484813a755c7b521129b3d |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| SSID | ssj0062793 |
| Score | 2.3751948 |
| Snippet | Timely and accurate wildfire detection is critical for ecological monitoring and disaster response. Using a model to handle both long-term time series and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 28971 |
| SubjectTerms | Algorithms Burned area convolutional long short-term memory (ConvLSTM) Convolutional neural networks Data models Disaster management Ecological monitoring Forest fire detection Forest fires Forestry Indexes Long short-term memory Mathematical models Monitoring near real-time disturbance detection Predictive models Recall Remote sensing Root-mean-square errors satellite image time series Satellite imagery Spatiotemporal phenomena Springs Time series Time series analysis Wildfires |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RClAvtJSiLrSVDxxJm42d2D52-75UFQWpN8tPuhLsot0UiX_PjOMFVRUHblFkJ5HHj28mM98H8EEliyjYqapNUVRChFgppWMVuPLoawtv60FsQl5fq7s7fVOK1XMtTIwxJ5_FQ7rM__LD3D9QqOwIsQFp3Kg1WJOyG4q1Vttu18jMsIuARFfEGVMohsa1PsI5fvzpFp3Bpj3EDZsIYR4dQ5mtv8irPNmT80Fzvvmfn7gFrwqiZMfDFHgNz-JsG16S5CbpuG3Di4ss3vvrDUxPY58zr2ZsntjQgk0oqBmwe7Qs5w8wy25zmnVhrcJHf_s6X0z7--9sgmdeYNifZOspRsKuiG2RUSEJo0BbXLJT29sd-HJ-9vnksipSC5VvZNdVmiSEGu2F042yKnZiLL1H38xp59xYu9oGr2odLXeE4HQSXvhUh4jwStSWv4X12XwWd4ElLrQMoZG1sCKhA-a7qFyDsDKge8ntCD6uRt78GBg1TPZEam0GQxkylCmGGsGErPOnKdFh5xs47KasLmNdap3lMjWC5AG4lW3rpUNognDG8TCCHTLV3_cVK41gb2VsU9bu0nAcEUFOOn_3j27vYYM-cYjE7MF6v3iI-_Dc_-yny8VBnpa_AcAm3fc priority: 102 providerName: IEEE |
| Title | Detection of Forest Burned Area Using a Spatiotemporal Algorithm Based on Spectral Index Time Series Data |
| URI | https://ieeexplore.ieee.org/document/11230238 https://www.proquest.com/docview/3276413223 https://doaj.org/article/abf5ba37f2484813a755c7b521129b3d |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELWqqJW4IGhBpATkA8cucdbetX0kDSlcECpF4mb5EyJBgpItEv--M95NAfXApdfVer074_XMG43fI-RIJQtZsFNFlaIohAixUErHInDlAWsLb1krNiEvLtTNjb58JfWFPWEtPXBruKF1qXKWy1QKZH7nVlaVlw6iDkQqxwPuvkzqNZhq9-C6lJluF7ITXSCBTMc3NGJ6CAv-5OcVIMOyOobdG9lh3sSkTN3faa38s0HnqDPdIptdukhP2tfcJh_i_DP59CPL8T5_IbNJbHIv1ZwuEkWZzVVDx1imDDAmWpo7AqilV7lxuuOhgufd3y6Ws-bugY4higUK41GIHqse9Bz5EykeDaFYOosrOrGN3SHX09Nf38-KTjyh8KWs60KjKFCpvXC6VFbFWoyk94C2nHbOjbRjNnjFdLTcYU6mk_DCJxYiJEyCWb5LevPFPO4RmrjQMoRSMmFFAkjl66hcCYliAMDIbZ98W5vPPLYcGSZjC6ZNa22D1jadtftkjCb-eysSXOcL4HbTud285_Y-2UEHvcwHERjTjz4ZrD1mur9xZThYRCDs5l__x9z7ZAO_py3EDEivWf6OB-Sjf2pmq-VhXoiH-SDhH5ib3aQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BgdILj1LEQgEfOJI2azuJfey2lFaUFaJF6s3yk64Eu2g3ReLfM-N4QQhx4BZFdhJ5_PhmMvN9AK9UsoiCnaqaFGUlZYiVUjpWQSiPvrb0th7EJrrpVF1e6g-lWD3XwsQYc_JZ3KPL_C8_LPw1hcr2ERuQxo26CbcaKXk9lGutN96Wd5ljFyGJrog1ppAMjWu9j7P84OM5uoO82cMtmyhh_jiIMl9_EVj5a1fOR83x_f_8yAdwr2BKdjBMgodwI863YZNEN0nJbRvuvM3yvT8ewewo9jn3as4WiQ0t2ITCmgG7R8tyBgGz7DwnWhfeKnz0l8-L5ay_-someOoFhv1JuJ6iJOyU-BYZlZIwCrXFFTuyvd2BT8dvLg5PqiK2UHnetW2lSUSIay-d5sqq2Mpx5z16Z04758ba1TZ4VetohSMMp5P00qc6RARYsrbiMWzMF_P4BFgSUnch8K6WViZ0wXwbleMILAM6mMKO4PV65M23gVPDZF-k1mYwlCFDmWKoEUzIOr-aEiF2voHDbsr6MtalxlnRJS5JIEDYrml85xCcIKBxIoxgh0z1-33FSiPYXRvblNW7MgJHRJKbLp7-o9tLuHty8f7MnJ1O3z2DLfrcIS6zCxv98jo-h9v-ez9bLV_kKfoTdAfhPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Forest+Burned+Area+Using+a+Spatiotemporal+Algorithm+Based+on+Spectral+Index+Time+Series+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Li%2C+Yunhao&rft.au=Liu%2C+Jinxiu&rft.au=Maeda%2C+Eduardo+Eiji&rft.au=Li%2C+Xuecao&rft.date=2025&rft.issn=1939-1404&rft.eissn=2151-1535&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FJSTARS.2025.3629696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3629696 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |