Increasing the Accuracy of Malware Detection in PE Files Using Advanced Machine-Learning Techniques

This work presents the design and implementation of a new malware detection system for Portable Executable (PE) files in the Windows operating system using machine learning methods. The system uses various techniques for extracting attributes from binary files, including the n-gram method, branch an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 13; S. 191180 - 191202
Hauptverfasser: Papan, Jozef, Scasny, Martin, Bridova, Ivana, Janovec, Michal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This work presents the design and implementation of a new malware detection system for Portable Executable (PE) files in the Windows operating system using machine learning methods. The system uses various techniques for extracting attributes from binary files, including the n-gram method, branch analysis of instructions, and frequency analysis of instructions, which are combined with information about imported functions. To improve the classification accuracy and optimize the computational effort, neural networks with different architectures were trained and optimized. The implemented API (Application Programming Interface) interface allows easy integration of the system into existing security solutions and offers flexibility in the choice of classification models. Experimental results are compared with commercial detection systems, while the detection accuracy and false positive and false negative rates are analyzed. The limitations of the proposed approach, possibilities for its improvement, and perspectives for further use of machine learning in the field of malware detection are discussed in the conclusion of the work.
AbstractList This work presents the design and implementation of a new malware detection system for Portable Executable (PE) files in the Windows operating system using machine learning methods. The system uses various techniques for extracting attributes from binary files, including the n-gram method, branch analysis of instructions, and frequency analysis of instructions, which are combined with information about imported functions. To improve the classification accuracy and optimize the computational effort, neural networks with different architectures were trained and optimized. The implemented API (Application Programming Interface) interface allows easy integration of the system into existing security solutions and offers flexibility in the choice of classification models. Experimental results are compared with commercial detection systems, while the detection accuracy and false positive and false negative rates are analyzed. The limitations of the proposed approach, possibilities for its improvement, and perspectives for further use of machine learning in the field of malware detection are discussed in the conclusion of the work.
Author Bridova, Ivana
Papan, Jozef
Janovec, Michal
Scasny, Martin
Author_xml – sequence: 1
  givenname: Jozef
  orcidid: 0000-0001-8118-7513
  surname: Papan
  fullname: Papan, Jozef
  organization: University of Žilina, Žilina, Slovakia
– sequence: 2
  givenname: Martin
  surname: Scasny
  fullname: Scasny, Martin
  organization: University of Žilina, Žilina, Slovakia
– sequence: 3
  givenname: Ivana
  orcidid: 0000-0002-7862-8792
  surname: Bridova
  fullname: Bridova, Ivana
  email: ivana.bridova@uniza.sk
  organization: University of Žilina, Žilina, Slovakia
– sequence: 4
  givenname: Michal
  orcidid: 0009-0007-2567-0691
  surname: Janovec
  fullname: Janovec, Michal
  organization: University of Žilina, Žilina, Slovakia
BookMark eNpNUU1PGzEQtSoqFSi_oD1Y6nlTf629e4xCaCMFtVLC2fKOx8RRsMG7oeLfd8OiFl_Gmnnvzce7IGcpJyTkC2czzln7fb5YLDebmWCinkktjBTqAzkXXLeVrKU-e_f_RK76fs_G14yp2pwTWCUo6PqY7umwQzoHOBYHLzQHeusOf1xBeo0DwhBzojHR30t6Ew_Y07tXztw_uwToRzDsYsJqja6kU2WLsEvx6Yj9Z_IxuEOPV2_xktzdLLeLn9X614_VYr6uQBitqs632hvTudCG1psgvGLcsI4p43nHdANGepBBqACGs9Ciqk2QJjDNUICQl2Q16frs9vaxxAdXXmx20b4mcrm3rgwRDmg7wdl4qq6tuVZOdZ3TiA00UAupObaj1rdJ67Hk0w6D3edjSeP4VgrDueFK1SNKTigoue8Lhn9dObMnc-xkjj2ZY9_MGVlfJ1ZExP8MLoSoGyb_AmdXi4M
CODEN IAECCG
Cites_doi 10.1016/j.comcom.2022.08.015
10.3390/fi15060214
10.1109/icse-seip58684.2023.00031
10.1109/access.2024.3519524
10.1007/978-3-031-66245-4_9
10.1007/978-981-15-0029-9_62
10.1109/access.2023.3313409
10.1007/s11416-023-00505-x
10.1109/tii.2025.3556075
10.1109/ibcast.2019.8667202
10.5220/0007470705280535
10.1109/access.2023.3319093
10.1109/icassp.2015.7178304
10.3390/electronics9111777
10.1109/icoice48418.2019.9035187
10.1201/9781420030884
10.1109/iccsea54677.2022.9936121
10.1007/978-981-15-8086-4_8
10.1109/tbme.2020.2994152
10.1145/3395042
10.1109/access.2024.3388716
10.1109/access.2023.3300381
10.1109/access.2024.3452675
10.1016/j.cose.2024.104233
10.1007/978-3-031-33488-7_19
10.1109/icicip.2014.7010353
10.1109/cosmic63293.2024.10871898
10.1007/s11416-016-0283-1
10.1007/s11416-025-00555-3
10.1109/access.2023.3256979
10.1109/tetc.2024.3439884
10.1109/access.2021.3089586
10.1109/ccst.1991.202223
10.1109/ic2ie60547.2023.10331246
10.1145/3318299.3318305
10.1109/tcbb.2017.2691329
10.1109/lcsys.2021.3085172
10.1007/s11416-015-0261-z
10.1109/access.2023.3262265
10.1109/malware.2015.7413680
10.1109/noms56928.2023.10154321
10.3390/app10217673
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3627324
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 191202
ExternalDocumentID oai_doaj_org_article_b210627b95164a4bba6ee8c8c52361e9
10_1109_ACCESS_2025_3627324
11222580
Genre orig-research
GrantInformation_xml – fundername: Slovak Grant Agency through the VEGA Project Fast Reroute
  grantid: 1/0316/24
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2764-bd96d77baf9f9d7f2d40170b047d1b068c73dc3f24fc710f9e457f37f060e2c23
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Mon Dec 01 19:30:57 EST 2025
Thu Nov 13 04:44:31 EST 2025
Thu Nov 27 00:49:14 EST 2025
Wed Nov 19 08:27:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2764-bd96d77baf9f9d7f2d40170b047d1b068c73dc3f24fc710f9e457f37f060e2c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7862-8792
0009-0007-2567-0691
0000-0001-8118-7513
OpenAccessLink https://doaj.org/article/b210627b95164a4bba6ee8c8c52361e9
PQID 3271171445
PQPubID 4845423
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_b210627b95164a4bba6ee8c8c52361e9
crossref_primary_10_1109_ACCESS_2025_3627324
proquest_journals_3271171445
ieee_primary_11222580
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
Hahn (ref14) 2014
ref10
ref54
ref17
ref16
ref19
(ref2) 2025
ref18
(ref30) 2025
ref51
ref50
ref45
ref47
ref42
ref41
ref43
ref49
ref7
ref9
ref4
Ahlgren (ref46) 2021
ref3
ref6
(ref21) 2025
ref5
ref35
ref34
ref37
ref36
ref31
ref33
ref32
(ref38) 2025
Roth (ref48) 2019
ref1
ref39
Jones (ref44) 2025
(ref8) 2025
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
(ref40) 2025
(ref11) 2025
Severyn (ref52) 2025
References_xml – ident: ref47
  doi: 10.1016/j.comcom.2022.08.015
– ident: ref28
  doi: 10.3390/fi15060214
– ident: ref33
  doi: 10.1109/icse-seip58684.2023.00031
– ident: ref10
  doi: 10.1109/access.2024.3519524
– ident: ref6
  doi: 10.1007/978-3-031-66245-4_9
– ident: ref41
  doi: 10.1007/978-981-15-0029-9_62
– volume-title: Malware Statistics & Trends Report | AV-TEST
  year: 2025
  ident: ref2
– ident: ref19
  doi: 10.1109/access.2023.3313409
– ident: ref45
  doi: 10.1007/s11416-023-00505-x
– ident: ref23
  doi: 10.1109/tii.2025.3556075
– volume-title: Kaspersky Security Bulletin 2023
  year: 2025
  ident: ref8
– ident: ref12
  doi: 10.1109/ibcast.2019.8667202
– volume-title: World of Malware Analysis and Threat Hunting
  year: 2025
  ident: ref21
– ident: ref42
  doi: 10.5220/0007470705280535
– ident: ref3
  doi: 10.1109/access.2023.3319093
– ident: ref24
  doi: 10.1109/icassp.2015.7178304
– volume-title: Malware Generation Tool That Used Metamorphic Approaches | by Erkan Yilmaz | Medium
  year: 2025
  ident: ref30
– volume-title: Malware Anti-VM Techniques
  year: 2025
  ident: ref40
– ident: ref50
  doi: 10.3390/electronics9111777
– ident: ref35
  doi: 10.1109/icoice48418.2019.9035187
– ident: ref25
  doi: 10.1201/9781420030884
– volume-title: Malware Obfuscation, Encoding and Encryption | Infosec
  year: 2025
  ident: ref38
– ident: ref9
  doi: 10.1109/iccsea54677.2022.9936121
– ident: ref7
  doi: 10.1007/978-981-15-8086-4_8
– ident: ref36
  doi: 10.1109/tbme.2020.2994152
– ident: ref34
  doi: 10.1145/3395042
– ident: ref27
  doi: 10.1109/access.2024.3388716
– ident: ref1
  doi: 10.1109/access.2023.3300381
– year: 2014
  ident: ref14
  article-title: Robust static analysis of portable executable malware
– volume-title: PE Format—Win32 Apps | Microsoft Learn
  year: 2025
  ident: ref11
– ident: ref15
  doi: 10.1109/access.2024.3452675
– ident: ref53
  doi: 10.1016/j.cose.2024.104233
– ident: ref4
  doi: 10.1007/978-3-031-33488-7_19
– ident: ref39
  doi: 10.1109/icicip.2014.7010353
– ident: ref13
  doi: 10.1109/cosmic63293.2024.10871898
– volume-title: Comparing State-of-the-Art Machine Learning Malware Detection Methods on Windows
  year: 2021
  ident: ref46
– ident: ref51
  doi: 10.1007/s11416-016-0283-1
– volume-title: Adapting Linguistic Deception Cues for Malware Detection
  year: 2025
  ident: ref52
– ident: ref18
  doi: 10.1007/s11416-025-00555-3
– ident: ref29
  doi: 10.1109/access.2023.3256979
– ident: ref32
  doi: 10.1109/tetc.2024.3439884
– ident: ref43
  doi: 10.1109/access.2021.3089586
– ident: ref26
  doi: 10.1109/ccst.1991.202223
– ident: ref16
  doi: 10.1109/ic2ie60547.2023.10331246
– ident: ref49
  doi: 10.1145/3318299.3318305
– ident: ref37
  doi: 10.1109/tcbb.2017.2691329
– ident: ref31
  doi: 10.1109/lcsys.2021.3085172
– ident: ref22
  doi: 10.1007/s11416-015-0261-z
– ident: ref17
  doi: 10.1109/access.2023.3262265
– ident: ref5
  doi: 10.1109/malware.2015.7413680
– start-page: 165
  volume-title: Malware Analysis and Classification Using Deep Learning
  year: 2025
  ident: ref44
– volume-title: An Evaluation of Machine Learning Approaches for Hierarchical Malware Classification
  year: 2019
  ident: ref48
– ident: ref20
  doi: 10.1109/noms56928.2023.10154321
– ident: ref54
  doi: 10.3390/app10217673
SSID ssj0000816957
Score 2.3343089
Snippet This work presents the design and implementation of a new malware detection system for Portable Executable (PE) files in the Windows operating system using...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 191180
SubjectTerms Accuracy
Application programming interface
Application programming interfaces
Classification
Codes
Detection system
Feature extraction
Machine learning
Malware
Neural networks
Operating systems
PE files
Security
Symbols
Training
Windows (computer programs)
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFLYo4gAHWjYxLJUPHAlkcfLi43Rg1EsRB5C4WV4REsqgWUD8e95zPEBVcegtiRzF9ue3Oc_fY-yE-GGIwyQTUkOGJqDOZGNQGRIHKvnMRrhYbAKurtq7O3mdDqvHszDe-5h85s_oMv7LdxO7oK2yc_QNcPm1GKF_A4D-sNb7hgpVkJA1JGahIpfnw9EIB4ExYFmfoZ6GqhR_WZ9I0p-qqvyjiqN9GX__z579YJvJkeTDHvkttuK7bbbxiV5wh1kUfso5xxuOfh4fWruYavvKJ4H_0Y8veur5hZ_HZKyOP3T8-pKPUUvMeEwk4MOUH4CNKePSZ4mM9Z7fLJlfZ7vsdnx5M_qdpaIKmS2hEZlxsnEARgcZpINQOkEUOiYX4AqTN62FytkqlCJY9D6C9KKGUEHIm9yXtqz22Go36fw-414WIW9tW1TWouhrHZwQaPJD2wQw0gzY6XKy1VPPnaFizJFL1WOjCBuVsBmwXwTIe1Mivo4PcKZVkiNlMETF5gYdw0ZoYYxuvMc-2JpYZLwcsF1C5-N7CZgBO1riq5KUzlRVQkEF4EV98MVrh2ydutjvuRyx1fl04Y_Zmn2eP8ymP-MCfAPi1Ndp
  priority: 102
  providerName: IEEE
Title Increasing the Accuracy of Malware Detection in PE Files Using Advanced Machine-Learning Techniques
URI https://ieeexplore.ieee.org/document/11222580
https://www.proquest.com/docview/3271171445
https://doaj.org/article/b210627b95164a4bba6ee8c8c52361e9
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29S8QwFA8iDjqIHydWT8ngaL02TZNmPM87XBQHBbeQpIkIUuV6p7j4t_uS5vTEwcWl0BJI83t9X-nL7yF04vlhPIdJSoXiKbiAMhVMgzH0HKg-Zta0Ds0m-PV1dX8vbpZaffmasI4euANuoCEnYYRriAQYVVRrxaytTGVKTxtiw9E9iHqWkqlgg6uciZJHmqE8E4PhaAQrgoSQlGdgtHlB6A9XFBj7Y4uVX3Y5OJvJFtqMUSIedm-3jVZss4M2lrgDd5EBzfYF5XCDIYjDQ2PmU2Xe8bPDV-rpTU0tvrCzUGnV4McG34zxBExAi0OVAB7Gn_8w2JdT2jQyrT7g2wWta9tDd5Px7egyjR0TUkM4o6muBas518oJJ2ruSE09P47OKK9znbHK8KI2hSPUGQgtnLC05K7gLmOZJYYUe2i1eW7sPsJW5C4DnPPCGNBrpVxNKfhzVzEH0tAJOl2AJ186YgwZEopMyA5r6bGWEesEnXuAv4Z6VuvwAGQto6zlX7JOUM-L53u-3GerVZag_kJeMqpgKwvCc9_dnZYH_zH3IVr36-l2X_podTad2yO0Zl5nj-30OHx9cL36GB-HM4SfWdfbvA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hggQ9UB5FbCngA0fSJo4Tx8dl21UR7aqHRerN8rOqhLJoH0X8-8443gJCHLglkaPY_jzjmcn4G4APxA9DHCaFUEYWuAU0hWotKkPiQCWb2Qqfik3I2ay7ulKX-bB6OgsTQkjJZ-GILtO_fL9wGwqVHaNtgMuvQw_9YSMEr4bjWvchFaohoRqZuYWqUh2PJxMcBnqBvDlCTS1rLv7YfxJNf66r8pcyTjvMdO8_-_YMnmZTko0H7J_Dg9C_gN3fCAZfgkPxp6xzvGFo6bGxc5ulcT_ZIrIL8-2HWQZ2EtYpHatnNz27PGVT1BMrllIJ2DhnCGBjyrkMRaZjvWbzLffrah--Tk_nk7Mil1UoHJetKKxXrZfSmqii8jJyL4hEx5ZC-sqWbedk7V0duYgO7Y-ogmhkrGUs2zJwx-tXsNMv-vAaWFBVLDvXVbVzKPzGRI-4CB67Nkqr7Ag-bidbfx_YM3TyOkqlB2w0YaMzNiP4RIDcNyXq6_QAZ1pnSdIWnVRsbtE0bIUR1po2BOyDa4hHJqgR7BM6v76XgRnB4RZfneV0pWsuKyoBL5qDf7z2Hh6fzS_O9fnn2Zc38IS6O0RgDmFnvdyEt_DI3a5vVst3aTHeAT072rA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+the+Accuracy+of+Malware+Detection+in+PE+Files+Using+Advanced+Machine-Learning+Techniques&rft.jtitle=IEEE+access&rft.au=Papan%2C+Jozef&rft.au=Scasny%2C+Martin&rft.au=Bridova%2C+Ivana&rft.au=Janovec%2C+Michal&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=191180&rft.epage=191202&rft_id=info:doi/10.1109%2FACCESS.2025.3627324&rft.externalDocID=11222580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon