High performance solution-processed infrared photodiode based on ternary PbSxSe1−x colloidal quantum dots
Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this pape...
Saved in:
| Published in: | RSC advances Vol. 6; no. 9; pp. 8773 - 87737 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
14.09.2016
|
| Subjects: | |
| ISSN: | 2046-2069, 2046-2069 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbS
x
Se
1−
x
/Au, in which ternary PbS
x
Se
1−
x
QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbS
x
Se
1−
x
QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbS
x
Se
1−
x
alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS
0.4
Se
0.6
alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10
13
Jones, respectively, were obtained at a certain thickness under 100 μW cm
−2
980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment.
High performance solution-processed infrared photodiodes ITO/ZnO/PbS
x
Se
1−
x
/Au, in which ternary PbS
x
Se
1−
x
colloidal quantum dots acts as the active layer and ZnO interlayer acts as electron-transporting layer, have been demonstrated. |
|---|---|
| AbstractList | Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbSₓSe₁₋ₓ/Au, in which ternary PbSₓSe₁₋ₓ QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbSₓSe₁₋ₓ QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbSₓSe₁₋ₓ alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS₀.₄Se₀.₆ alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10¹³ Jones, respectively, were obtained at a certain thickness under 100 μW cm⁻² 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment. Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbS x Se 1− x /Au, in which ternary PbS x Se 1− x QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbS x Se 1− x QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbS x Se 1− x alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS 0.4 Se 0.6 alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10 13 Jones, respectively, were obtained at a certain thickness under 100 μW cm −2 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment. High performance solution-processed infrared photodiodes ITO/ZnO/PbS x Se 1− x /Au, in which ternary PbS x Se 1− x colloidal quantum dots acts as the active layer and ZnO interlayer acts as electron-transporting layer, have been demonstrated. Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbSxSe1-x/Au, in which ternary PbSxSe1-x QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbSxSe1-x QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbSxSe1-x alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS0.4Se0.6 alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 1013 Jones, respectively, were obtained at a certain thickness under 100 mu W cm-2 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment. Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbS x Se 1−x /Au, in which ternary PbS x Se 1−x QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbS x Se 1−x QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbS x Se 1−x alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS 0.4 Se 0.6 alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10 13 Jones, respectively, were obtained at a certain thickness under 100 μW cm −2 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment. |
| Author | Yang, Shengyi Sulaman, Muhammad Zou, Bingsuo Song, Yong Dong, Miao Wang, Haowei Song, Taojian He, Bo Tang, Yi Wang, Yishan |
| AuthorAffiliation | School of Optoelectronics State Key Lab of Transducer Technology Chinese Academy of Sciences Ministry of Education School of Materials Science and Engineering School of Physics Key Lab of Photoelectronic Imaging Technology and System Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems Beijing Institute of Technology |
| AuthorAffiliation_xml | – name: State Key Lab of Transducer Technology – name: Key Lab of Photoelectronic Imaging Technology and System – name: Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems – name: Chinese Academy of Sciences – name: Beijing Institute of Technology – name: School of Materials Science and Engineering – name: School of Physics – name: Ministry of Education – name: School of Optoelectronics |
| Author_xml | – sequence: 1 givenname: Muhammad surname: Sulaman fullname: Sulaman, Muhammad – sequence: 2 givenname: Shengyi surname: Yang fullname: Yang, Shengyi – sequence: 3 givenname: Taojian surname: Song fullname: Song, Taojian – sequence: 4 givenname: Haowei surname: Wang fullname: Wang, Haowei – sequence: 5 givenname: Yishan surname: Wang fullname: Wang, Yishan – sequence: 6 givenname: Bo surname: He fullname: He, Bo – sequence: 7 givenname: Miao surname: Dong fullname: Dong, Miao – sequence: 8 givenname: Yi surname: Tang fullname: Tang, Yi – sequence: 9 givenname: Yong surname: Song fullname: Song, Yong – sequence: 10 givenname: Bingsuo surname: Zou fullname: Zou, Bingsuo |
| BookMark | eNqFkctKHUEQhhtRiFE32QfaXRBGu6tn6swsD4d4ASHBy3ro6Yt2nNM9dveAeQPXPqJP4hxPiBJCUpsqqK-q-P_6SDZ98IaQT5wdciaaI4VR8qYpUW6QbWAlFsCw2XxXfyB7Kf1gU2DFAfk2uTt1N7d0MNGGuJReGZpCP2YXfDHEoExKRlPnbZRxKobbkIN2QRvayVUneJpN9DL-pN-7y4dLw58fnx6oCn0fnJY9vR-lz-OS6pDTLtmysk9m71feIdfHX68Wp8X5t5Ozxfy8UDCrcmE1ShBdVZtZxyxao2qGJXZc6JJjjQ0K2-hKowVlAWprZk0JWEMjJJbQiR3yZb13UnA_mpTbpUvK9L30JoypBagEiBJq9l-U12U1XYcKJvRgjaoYUorGtkN0y0l5y1m78r9d4MX81f_5BLM_YOWyXNmao3T930f21yMxqd-r317aDtpOzOd_MeIFr9CgvQ |
| CitedBy_id | crossref_primary_10_1016_j_mtchem_2024_102466 crossref_primary_10_1016_j_mtcomm_2024_108062 crossref_primary_10_1002_ppsc_202000285 crossref_primary_10_3390_molecules28031240 crossref_primary_10_1016_j_mssp_2022_107149 crossref_primary_10_1002_ente_202300492 crossref_primary_10_1016_j_cplett_2023_140689 crossref_primary_10_1088_1674_1056_28_2_020701 crossref_primary_10_1002_poc_4553 crossref_primary_10_1016_j_mtcomm_2023_106736 crossref_primary_10_1016_j_sna_2019_01_029 crossref_primary_10_1016_j_mtcomm_2023_106556 crossref_primary_10_1109_JSEN_2021_3099059 crossref_primary_10_1186_s40580_020_00238_3 crossref_primary_10_1002_adfm_202303449 crossref_primary_10_1002_pssa_201800408 crossref_primary_10_1002_admi_202200017 crossref_primary_10_1016_j_commatsci_2024_113037 crossref_primary_10_1039_D4SC00722K crossref_primary_10_1016_j_commatsci_2024_112961 crossref_primary_10_1088_1361_6528_aa97b9 crossref_primary_10_1016_j_sna_2019_07_003 crossref_primary_10_3390_nano15141107 crossref_primary_10_1007_s00894_023_05677_3 crossref_primary_10_3390_s23042254 crossref_primary_10_1002_admt_202301650 crossref_primary_10_1088_1361_6528_ab5a26 crossref_primary_10_1016_j_jallcom_2017_04_109 crossref_primary_10_1016_j_jallcom_2020_156831 crossref_primary_10_1002_adfm_202201527 crossref_primary_10_1088_1361_6528_ab3b7a crossref_primary_10_1088_1361_6528_ac47d3 crossref_primary_10_1016_j_mtphys_2022_100829 |
| Cites_doi | 10.1063/1.447218 10.1364/OME.5.001109 10.1088/0957-4484/23/25/255203 10.1021/nl080373e 10.1002/adma.201306266 10.1142/p276 10.1126/science.1116703 10.1007/s12274-009-9047-2 10.1002/adma.200305395 10.1021/ja2079509 10.1021/nn7003348 10.1038/nphoton.2009.89 10.1063/1.1315344 10.1063/1.3669515 10.1038/nnano.2012.63 10.1021/ja800040c 10.1021/j100122a026 10.1039/C3TC31478B 10.1021/nn100339b 10.1016/j.msec.2005.06.010 10.1109/JSEN.2010.2068542 10.1007/s11671-010-9721-z 10.1002/adma.200305449 10.1002/adma.201302340 10.1126/science.271.5251.933 10.1002/adfm.200400620 10.1038/ncomms2830 10.1021/nn800471c 10.1021/jp0644356 10.1088/1367-2630/11/12/125020 10.1021/nl0345116 10.1038/370354a0 10.1088/0957-4484/27/16/165202 10.1021/jp050745x 10.1063/1.2359579 10.1002/adma.201202825 10.1016/j.actamat.2006.08.030 10.1007/s00340-012-5077-7 10.1002/adfm.200700766 10.1021/nn100131w 10.1039/C5RA25761A 10.1021/nl900388a |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7S9 L.6 |
| DOI | 10.1039/c6ra19946a |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2046-2069 |
| EndPage | 87737 |
| ExternalDocumentID | 10_1039_C6RA19946A c6ra19946a |
| GroupedDBID | -JG 0-7 AAEMU ABGFH AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- H~N J3I R7C R7E R7G RCNCU RPMJG RRC RSCEA SLH SMJ 0R~ 53G AAFBY AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABJNI ABPDG ABXOH ACGFS ADBBV ADMRA AENEX AESAV AETIL AFLYV AFPKN AFRZK AGEGJ AGMRB AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT BCNDV BLAPV CITATION EBS ECGLT EJD GROUPED_DOAJ H13 HZ~ J3G J3H M~E O9- OK1 PGMZT RAOCF RPM RVUXY YAE ZCN 7SR 8BQ 8FD JG9 7S9 L.6 |
| ID | FETCH-LOGICAL-c275t-fd6a23b58e7b0f6fec80646b13d41686963f9d5d6f2cf228fe794268293a642b3 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384232600114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2046-2069 |
| IngestDate | Sun Sep 28 10:28:40 EDT 2025 Mon Sep 29 03:47:43 EDT 2025 Sat Nov 29 05:36:18 EST 2025 Tue Nov 18 22:16:45 EST 2025 Mon Jan 28 17:15:19 EST 2019 Sat Jun 01 02:30:27 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c275t-fd6a23b58e7b0f6fec80646b13d41686963f9d5d6f2cf228fe794268293a642b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1845806252 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2253234280 proquest_miscellaneous_1845806252 crossref_citationtrail_10_1039_C6RA19946A crossref_primary_10_1039_C6RA19946A rsc_primary_c6ra19946a |
| ProviderPackageCode | J3I R7E RRC R7G AEFDR RPMJG -JG AGSTE RCNCU AUDPV EF- SLH BSQNT EE0 SMJ RSCEA AFVBQ C6K H~N 0-7 ABGFH AAEMU R7C |
| PublicationCentury | 2000 |
| PublicationDate | 20160914 |
| PublicationDateYYYYMMDD | 2016-09-14 |
| PublicationDate_xml | – month: 9 year: 2016 text: 20160914 day: 14 |
| PublicationDecade | 2010 |
| PublicationTitle | RSC advances |
| PublicationYear | 2016 |
| References | Sashchiuk (C6RA19946A-(cit15)/*[position()=1]) 2004; 4 Sulaman (C6RA19946A-(cit43)/*[position()=1]) 2016; 6 Steckel (C6RA19946A-(cit14)/*[position()=1]) 2003; 15 Jong (C6RA19946A-(cit26)/*[position()=1]) 2000; 77 Keuleyan (C6RA19946A-(cit10)/*[position()=1]) 2011; 133 Song (C6RA19946A-(cit28)/*[position()=1]) 2016; 27 Zhitomirsky (C6RA19946A-(cit3)/*[position()=1]) 2012; 24 Sze (C6RA19946A-(cit47)/*[position()=1]) 1981 Sun (C6RA19946A-(cit7)/*[position()=1]) 2012; 7 Liu (C6RA19946A-(cit30)/*[position()=1]) 2013; 25 Barkhouse (C6RA19946A-(cit45)/*[position()=1]) 2008; 2 Talapin (C6RA19946A-(cit18)/*[position()=1]) 2005; 310 Yang (C6RA19946A-(cit19)/*[position()=1]) 2013; 23 Kigel (C6RA19946A-(cit11)/*[position()=1]) 2007; 6596 Kigel (C6RA19946A-(cit22)/*[position()=1]) 2005; 25 Konstantatos (C6RA19946A-(cit46)/*[position()=1]) 2008; 8 Brumer (C6RA19946A-(cit17)/*[position()=1]) 2005 Zhang (C6RA19946A-(cit42)/*[position()=1]) 2013; 4 Nelson (C6RA19946A-(cit48)/*[position()=1]) 2003 Yook (C6RA19946A-(cit8)/*[position()=1]) 2014; 26 Kigel (C6RA19946A-(cit24)/*[position()=1]) 2005; vol. 5929 Chang (C6RA19946A-(cit36)/*[position()=1]) 2007; 55 Oliva (C6RA19946A-(cit32)/*[position()=1]) 2015; 5 Li (C6RA19946A-(cit33)/*[position()=1]) 2010; 5 Colvin (C6RA19946A-(cit16)/*[position()=1]) 1994; 370 Lee (C6RA19946A-(cit27)/*[position()=1]) 2008; 18 Beek (C6RA19946A-(cit31)/*[position()=1]) 2005; 109 Zarghami (C6RA19946A-(cit5)/*[position()=1]) 2010; 4 Fu (C6RA19946A-(cit29)/*[position()=1]) 2105; 6 Alivisatos (C6RA19946A-(cit2)/*[position()=1]) 1996; 271 Choi (C6RA19946A-(cit34)/*[position()=1]) 2014; 2 Fontana (C6RA19946A-(cit41)/*[position()=1]) 2011; 11 Bru (C6RA19946A-(cit6)/*[position()=1]) 1984; 80 Peng (C6RA19946A-(cit1)/*[position()=1]) 2009; 2 Luther (C6RA19946A-(cit39)/*[position()=1]) 2008; 2 Kawazoe (C6RA19946A-(cit40)/*[position()=1]) 2012; 108 Sargent (C6RA19946A-(cit4)/*[position()=1]) 2009; 3 Luther (C6RA19946A-(cit20)/*[position()=1]) 2008; 2 White (C6RA19946A-(cit25)/*[position()=1]) 2006; 89 Lifshitz (C6RA19946A-(cit23)/*[position()=1]) 2006; 110 Sykora (C6RA19946A-(cit37)/*[position()=1]) 2010; 4 Law (C6RA19946A-(cit44)/*[position()=1]) 2008; 2 Ma (C6RA19946A-(cit9)/*[position()=1]) 2009; 9 Law (C6RA19946A-(cit38)/*[position()=1]) 2008; 130 Willander (C6RA19946A-(cit35)/*[position()=1]) 2009; 11 Nam (C6RA19946A-(cit12)/*[position()=1]) 2011; 99 Hasselbarth (C6RA19946A-(cit13)/*[position()=1]) 1993; 97 Hines (C6RA19946A-(cit21)/*[position()=1]) 2003; 15 |
| References_xml | – issn: 2005 issue: vol. 5929 end-page: 59290F publication-title: Synthesis, characterization and the use of PbSe/PbS and PbSe/PbSe S core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers doi: Kigel Brumer Sashchiuk Sirota Galun Lifshitz – issn: 1981 publication-title: Physics of Semiconductor devices doi: Sze – issn: 2003 publication-title: The Physics of Solar Cells doi: Nelson – volume: 80 start-page: 4403 year: 1984 ident: C6RA19946A-(cit6)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.447218 – volume: 5 start-page: 1109 year: 2015 ident: C6RA19946A-(cit32)/*[position()=1] publication-title: Opt. Mater. Express doi: 10.1364/OME.5.001109 – volume: 23 start-page: 255203 year: 2013 ident: C6RA19946A-(cit19)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/23/25/255203 – volume: 8 start-page: 1446 year: 2008 ident: C6RA19946A-(cit46)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl080373e – volume: 26 start-page: 4218 year: 2014 ident: C6RA19946A-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201306266 – volume: vol. 5929 volume-title: Synthesis, characterization and the use of PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers year: 2005 ident: C6RA19946A-(cit24)/*[position()=1] – volume-title: The Physics of Solar Cells year: 2003 ident: C6RA19946A-(cit48)/*[position()=1] doi: 10.1142/p276 – volume: 310 start-page: 86 year: 2005 ident: C6RA19946A-(cit18)/*[position()=1] publication-title: Science doi: 10.1126/science.1116703 – volume: 2 start-page: 425 year: 2009 ident: C6RA19946A-(cit1)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-009-9047-2 – volume: 15 start-page: 1844 year: 2003 ident: C6RA19946A-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200305395 – volume-title: Physics of Semiconductor devices year: 1981 ident: C6RA19946A-(cit47)/*[position()=1] – volume: 133 start-page: 16422 year: 2011 ident: C6RA19946A-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2079509 – volume: 6 start-page: 65201 year: 2105 ident: C6RA19946A-(cit29)/*[position()=1] publication-title: Nanotechnology – volume: 2 start-page: 271 year: 2008 ident: C6RA19946A-(cit39)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn7003348 – volume: 3 start-page: 325 year: 2009 ident: C6RA19946A-(cit4)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.89 – volume: 77 start-page: 2255 year: 2000 ident: C6RA19946A-(cit26)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.1315344 – volume: 99 start-page: 233115 year: 2011 ident: C6RA19946A-(cit12)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3669515 – volume: 7 start-page: 369 year: 2012 ident: C6RA19946A-(cit7)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.63 – volume: 130 start-page: 5974 year: 2008 ident: C6RA19946A-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800040c – volume: 97 start-page: 5333 year: 1993 ident: C6RA19946A-(cit13)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100122a026 – volume: 2 start-page: 98 year: 2014 ident: C6RA19946A-(cit34)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31478B – volume: 4 start-page: 2475 year: 2010 ident: C6RA19946A-(cit5)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn100339b – volume: 25 start-page: 604 year: 2005 ident: C6RA19946A-(cit22)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2005.06.010 – volume: 2 start-page: 271 year: 2008 ident: C6RA19946A-(cit44)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn7003348 – volume: 11 start-page: 869 year: 2011 ident: C6RA19946A-(cit41)/*[position()=1] publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2010.2068542 – volume: 6596 start-page: 95960H year: 2007 ident: C6RA19946A-(cit11)/*[position()=1] publication-title: Proc. SPIE – volume: 5 start-page: 1836 year: 2010 ident: C6RA19946A-(cit33)/*[position()=1] publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-010-9721-z – volume: 15 start-page: 1862 year: 2003 ident: C6RA19946A-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200305449 – volume: 25 start-page: 5772 year: 2013 ident: C6RA19946A-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302340 – volume: 271 start-page: 933 year: 1996 ident: C6RA19946A-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.271.5251.933 – start-page: 1111 year: 2005 ident: C6RA19946A-(cit17)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200400620 – volume: 4 start-page: 1811 year: 2013 ident: C6RA19946A-(cit42)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2830 – volume: 2 start-page: 2356 year: 2008 ident: C6RA19946A-(cit45)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn800471c – volume: 110 start-page: 25356 year: 2006 ident: C6RA19946A-(cit23)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0644356 – volume: 11 start-page: 125020 year: 2009 ident: C6RA19946A-(cit35)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/11/12/125020 – volume: 4 start-page: 159 year: 2004 ident: C6RA19946A-(cit15)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0345116 – volume: 370 start-page: 354 year: 1994 ident: C6RA19946A-(cit16)/*[position()=1] publication-title: Nature doi: 10.1038/370354a0 – volume: 27 start-page: 165202 year: 2016 ident: C6RA19946A-(cit28)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/27/16/165202 – volume: 109 start-page: 9505 year: 2005 ident: C6RA19946A-(cit31)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp050745x – volume: 2 start-page: 271 year: 2008 ident: C6RA19946A-(cit20)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn7003348 – volume: 89 start-page: 143517 year: 2006 ident: C6RA19946A-(cit25)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2359579 – volume: 24 start-page: 6181 year: 2012 ident: C6RA19946A-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201202825 – volume: 55 start-page: 329 issue: 1 year: 2007 ident: C6RA19946A-(cit36)/*[position()=1] publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.08.030 – volume: 108 start-page: 51 year: 2012 ident: C6RA19946A-(cit40)/*[position()=1] publication-title: Appl. Phys. B doi: 10.1007/s00340-012-5077-7 – volume: 18 start-page: 2246 year: 2008 ident: C6RA19946A-(cit27)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700766 – volume: 4 start-page: 2021 year: 2010 ident: C6RA19946A-(cit37)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn100131w – volume: 6 start-page: 44514 year: 2016 ident: C6RA19946A-(cit43)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA25761A – volume: 9 start-page: 1699 year: 2009 ident: C6RA19946A-(cit9)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl900388a |
| SSID | ssj0000651261 |
| Score | 2.3338888 |
| Snippet | Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are... |
| SourceID | proquest crossref rsc |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8773 |
| SubjectTerms | absorption Devices Electrodes energy indium tin oxide Interlayers ligands lighting mole fraction nanocrystals Photodiodes photoluminescence Photosensitivity production costs Quantum dots selenium Semiconductors sulfur Zinc oxide |
| Title | High performance solution-processed infrared photodiode based on ternary PbSxSe1−x colloidal quantum dots |
| URI | https://www.proquest.com/docview/1845806252 https://www.proquest.com/docview/2253234280 |
| Volume | 6 |
| WOSCitedRecordID | wos000384232600114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CxJcEK8VXR4yAg6oCts4ieMcUQXaA7tabQvsLXL8oIFtUtJm6V44c-Yn8NP4JYzzcApbpOXAJUodu278fR3P2OMZhJ4GMqFS-r7DiEgcn4McTJiWDvcU9ZWKXFHlIXv3Jjw8ZCcn0VGv96M9C3N2GmYZW62i-X-FGsoAbHN09h_gtl8KBXAPoMMVYIfrpYA3nhsmGrE9D9B258zrQwHKhFvSReV5Pp_my1ymuVQDM5_Jau_ALBEW54OjZLwaK7dyh2DPIrIaGNLkqQRUP5eASDkbgE27WNdvj8ej1q3AKuvjElhXr7MelFM-m3FpZU27Wj1V2Yfz1LZo_IQnPP-4Rt_3Te19nn9R6fp6hUuNc0V9TrQWawQscgCsTtDyQm0oa-QyXaNfnVK0EbIsDJu9HGU_hxung6FnoqmO6LEJ7utTG1C1i7n9x1xoPRSrvXkviru2W-gKCYPIuA0efO3W8UCFc0kVlte-RBsF14v2uua_6z2dMbNVtJlmKo1mchPdaEwR_LKm0C3UU9ltdG3UZgC8gz4ZKuE1KuGLVMItlXBHJVxRCecZbqiEGyr9_PZ9hS2JcEMibEh0F719_Woy2nea5ByOgGFYOlpSTrwkYCpMhppqJRhotzRxPQk6PqMg2HUkA0k1EZoQphVIfkIZqJccbN7E20HbWZ6pewhHnhYgSxJoFPl-IhMmmGKhiFw51GIY9NHzduhi0USuNwlUTuOLKPXRE1t3Xsdr2VjrcYtADGNq9sh4pvJyEbvMD-BFSED-XgemQI94YLcP-2gH4LMdCVrwqgPeR7ubH8RzqXcv9Rvvo-vd3-cB2l4WpXqIroqzZbooHlUk_AV9wbYI |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+performance+solution-processed+infrared+photodiode+based+on+ternary+PbSxSe1%E2%88%92x+colloidal+quantum+dots&rft.jtitle=RSC+advances&rft.au=Sulaman%2C+Muhammad&rft.au=Yang%2C+Shengyi&rft.au=Song%2C+Taojian&rft.au=Wang%2C+Haowei&rft.date=2016-09-14&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=6&rft.issue=90&rft.spage=87730&rft.epage=87737&rft_id=info:doi/10.1039%2FC6RA19946A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6RA19946A |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |