High performance solution-processed infrared photodiode based on ternary PbSxSe1−x colloidal quantum dots

Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this pape...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances Vol. 6; no. 9; pp. 8773 - 87737
Main Authors: Sulaman, Muhammad, Yang, Shengyi, Song, Taojian, Wang, Haowei, Wang, Yishan, He, Bo, Dong, Miao, Tang, Yi, Song, Yong, Zou, Bingsuo
Format: Journal Article
Language:English
Published: 14.09.2016
Subjects:
ISSN:2046-2069, 2046-2069
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbS x Se 1− x /Au, in which ternary PbS x Se 1− x QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbS x Se 1− x QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbS x Se 1− x alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS 0.4 Se 0.6 alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10 13 Jones, respectively, were obtained at a certain thickness under 100 μW cm −2 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment. High performance solution-processed infrared photodiodes ITO/ZnO/PbS x Se 1− x /Au, in which ternary PbS x Se 1− x colloidal quantum dots acts as the active layer and ZnO interlayer acts as electron-transporting layer, have been demonstrated.
AbstractList Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbSₓSe₁₋ₓ/Au, in which ternary PbSₓSe₁₋ₓ QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbSₓSe₁₋ₓ QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbSₓSe₁₋ₓ alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS₀.₄Se₀.₆ alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10¹³ Jones, respectively, were obtained at a certain thickness under 100 μW cm⁻² 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment.
Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbS x Se 1− x /Au, in which ternary PbS x Se 1− x QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbS x Se 1− x QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbS x Se 1− x alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS 0.4 Se 0.6 alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10 13 Jones, respectively, were obtained at a certain thickness under 100 μW cm −2 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment. High performance solution-processed infrared photodiodes ITO/ZnO/PbS x Se 1− x /Au, in which ternary PbS x Se 1− x colloidal quantum dots acts as the active layer and ZnO interlayer acts as electron-transporting layer, have been demonstrated.
Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbSxSe1-x/Au, in which ternary PbSxSe1-x QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbSxSe1-x QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbSxSe1-x alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS0.4Se0.6 alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 1013 Jones, respectively, were obtained at a certain thickness under 100 mu W cm-2 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment.
Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are recognized potential applications for QDs due to their high photosensitivity, solution processability and low cost of production. In this paper, a solution-processed near-infrared photodiode ITO/ZnO/PbS x Se 1−x /Au, in which ternary PbS x Se 1−x QDs act as the active layer and the ZnO interlayer acts as electron-transporting layer, was demonstrated. The photosensitive spectrum can be broadened by adjusting the molar fraction of ternary PbS x Se 1−x QDs. The narrow band edge of absorption and photoluminescence exciton energy of PbS x Se 1−x alloyed NCs were blue-shifted from the band edge of the same size PbSe QDs to the band edge of PbS QDs by controlling the S/(Se + S) molar ratio in the synthetic mixture. Efficient electron extraction was carried out by inserting a solution-processed ZnO interlayer between the indium-tin oxide (ITO) electrode and the active layer. Our experimental results show that the solution processing of the ZnO layer can lead to high-performance photodiodes by using photosensitized PbS 0.4 Se 0.6 alloyed nanocrystals as the active layer. The effect of the thickness of the active layer on the device performance was briefly described and a maximum photoresponsivity and specific detectivity of 25.8 A/W and 1.30 × 10 13 Jones, respectively, were obtained at a certain thickness under 100 μW cm −2 980 nm laser illumination. The devices are made stably by layer-by-layer ligand exchange treatment.
Author Yang, Shengyi
Sulaman, Muhammad
Zou, Bingsuo
Song, Yong
Dong, Miao
Wang, Haowei
Song, Taojian
He, Bo
Tang, Yi
Wang, Yishan
AuthorAffiliation School of Optoelectronics
State Key Lab of Transducer Technology
Chinese Academy of Sciences
Ministry of Education
School of Materials Science and Engineering
School of Physics
Key Lab of Photoelectronic Imaging Technology and System
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems
Beijing Institute of Technology
AuthorAffiliation_xml – name: State Key Lab of Transducer Technology
– name: Key Lab of Photoelectronic Imaging Technology and System
– name: Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems
– name: Chinese Academy of Sciences
– name: Beijing Institute of Technology
– name: School of Materials Science and Engineering
– name: School of Physics
– name: Ministry of Education
– name: School of Optoelectronics
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Sulaman
  fullname: Sulaman, Muhammad
– sequence: 2
  givenname: Shengyi
  surname: Yang
  fullname: Yang, Shengyi
– sequence: 3
  givenname: Taojian
  surname: Song
  fullname: Song, Taojian
– sequence: 4
  givenname: Haowei
  surname: Wang
  fullname: Wang, Haowei
– sequence: 5
  givenname: Yishan
  surname: Wang
  fullname: Wang, Yishan
– sequence: 6
  givenname: Bo
  surname: He
  fullname: He, Bo
– sequence: 7
  givenname: Miao
  surname: Dong
  fullname: Dong, Miao
– sequence: 8
  givenname: Yi
  surname: Tang
  fullname: Tang, Yi
– sequence: 9
  givenname: Yong
  surname: Song
  fullname: Song, Yong
– sequence: 10
  givenname: Bingsuo
  surname: Zou
  fullname: Zou, Bingsuo
BookMark eNqFkctKHUEQhhtRiFE32QfaXRBGu6tn6swsD4d4ASHBy3ro6Yt2nNM9dveAeQPXPqJP4hxPiBJCUpsqqK-q-P_6SDZ98IaQT5wdciaaI4VR8qYpUW6QbWAlFsCw2XxXfyB7Kf1gU2DFAfk2uTt1N7d0MNGGuJReGZpCP2YXfDHEoExKRlPnbZRxKobbkIN2QRvayVUneJpN9DL-pN-7y4dLw58fnx6oCn0fnJY9vR-lz-OS6pDTLtmysk9m71feIdfHX68Wp8X5t5Ozxfy8UDCrcmE1ShBdVZtZxyxao2qGJXZc6JJjjQ0K2-hKowVlAWprZk0JWEMjJJbQiR3yZb13UnA_mpTbpUvK9L30JoypBagEiBJq9l-U12U1XYcKJvRgjaoYUorGtkN0y0l5y1m78r9d4MX81f_5BLM_YOWyXNmao3T930f21yMxqd-r317aDtpOzOd_MeIFr9CgvQ
CitedBy_id crossref_primary_10_1016_j_mtchem_2024_102466
crossref_primary_10_1016_j_mtcomm_2024_108062
crossref_primary_10_1002_ppsc_202000285
crossref_primary_10_3390_molecules28031240
crossref_primary_10_1016_j_mssp_2022_107149
crossref_primary_10_1002_ente_202300492
crossref_primary_10_1016_j_cplett_2023_140689
crossref_primary_10_1088_1674_1056_28_2_020701
crossref_primary_10_1002_poc_4553
crossref_primary_10_1016_j_mtcomm_2023_106736
crossref_primary_10_1016_j_sna_2019_01_029
crossref_primary_10_1016_j_mtcomm_2023_106556
crossref_primary_10_1109_JSEN_2021_3099059
crossref_primary_10_1186_s40580_020_00238_3
crossref_primary_10_1002_adfm_202303449
crossref_primary_10_1002_pssa_201800408
crossref_primary_10_1002_admi_202200017
crossref_primary_10_1016_j_commatsci_2024_113037
crossref_primary_10_1039_D4SC00722K
crossref_primary_10_1016_j_commatsci_2024_112961
crossref_primary_10_1088_1361_6528_aa97b9
crossref_primary_10_1016_j_sna_2019_07_003
crossref_primary_10_3390_nano15141107
crossref_primary_10_1007_s00894_023_05677_3
crossref_primary_10_3390_s23042254
crossref_primary_10_1002_admt_202301650
crossref_primary_10_1088_1361_6528_ab5a26
crossref_primary_10_1016_j_jallcom_2017_04_109
crossref_primary_10_1016_j_jallcom_2020_156831
crossref_primary_10_1002_adfm_202201527
crossref_primary_10_1088_1361_6528_ab3b7a
crossref_primary_10_1088_1361_6528_ac47d3
crossref_primary_10_1016_j_mtphys_2022_100829
Cites_doi 10.1063/1.447218
10.1364/OME.5.001109
10.1088/0957-4484/23/25/255203
10.1021/nl080373e
10.1002/adma.201306266
10.1142/p276
10.1126/science.1116703
10.1007/s12274-009-9047-2
10.1002/adma.200305395
10.1021/ja2079509
10.1021/nn7003348
10.1038/nphoton.2009.89
10.1063/1.1315344
10.1063/1.3669515
10.1038/nnano.2012.63
10.1021/ja800040c
10.1021/j100122a026
10.1039/C3TC31478B
10.1021/nn100339b
10.1016/j.msec.2005.06.010
10.1109/JSEN.2010.2068542
10.1007/s11671-010-9721-z
10.1002/adma.200305449
10.1002/adma.201302340
10.1126/science.271.5251.933
10.1002/adfm.200400620
10.1038/ncomms2830
10.1021/nn800471c
10.1021/jp0644356
10.1088/1367-2630/11/12/125020
10.1021/nl0345116
10.1038/370354a0
10.1088/0957-4484/27/16/165202
10.1021/jp050745x
10.1063/1.2359579
10.1002/adma.201202825
10.1016/j.actamat.2006.08.030
10.1007/s00340-012-5077-7
10.1002/adfm.200700766
10.1021/nn100131w
10.1039/C5RA25761A
10.1021/nl900388a
ContentType Journal Article
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7S9
L.6
DOI 10.1039/c6ra19946a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 87737
ExternalDocumentID 10_1039_C6RA19946A
c6ra19946a
GroupedDBID -JG
0-7
AAEMU
ABGFH
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
R7C
R7E
R7G
RCNCU
RPMJG
RRC
RSCEA
SLH
SMJ
0R~
53G
AAFBY
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABJNI
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AGEGJ
AGMRB
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
BCNDV
BLAPV
CITATION
EBS
ECGLT
EJD
GROUPED_DOAJ
H13
HZ~
J3G
J3H
M~E
O9-
OK1
PGMZT
RAOCF
RPM
RVUXY
YAE
ZCN
7SR
8BQ
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c275t-fd6a23b58e7b0f6fec80646b13d41686963f9d5d6f2cf228fe794268293a642b3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384232600114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-2069
IngestDate Sun Sep 28 10:28:40 EDT 2025
Mon Sep 29 03:47:43 EDT 2025
Sat Nov 29 05:36:18 EST 2025
Tue Nov 18 22:16:45 EST 2025
Mon Jan 28 17:15:19 EST 2019
Sat Jun 01 02:30:27 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-fd6a23b58e7b0f6fec80646b13d41686963f9d5d6f2cf228fe794268293a642b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1845806252
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_2253234280
proquest_miscellaneous_1845806252
crossref_citationtrail_10_1039_C6RA19946A
crossref_primary_10_1039_C6RA19946A
rsc_primary_c6ra19946a
ProviderPackageCode J3I
R7E
RRC
R7G
AEFDR
RPMJG
-JG
AGSTE
RCNCU
AUDPV
EF-
SLH
BSQNT
EE0
SMJ
RSCEA
AFVBQ
C6K
H~N
0-7
ABGFH
AAEMU
R7C
PublicationCentury 2000
PublicationDate 20160914
PublicationDateYYYYMMDD 2016-09-14
PublicationDate_xml – month: 9
  year: 2016
  text: 20160914
  day: 14
PublicationDecade 2010
PublicationTitle RSC advances
PublicationYear 2016
References Sashchiuk (C6RA19946A-(cit15)/*[position()=1]) 2004; 4
Sulaman (C6RA19946A-(cit43)/*[position()=1]) 2016; 6
Steckel (C6RA19946A-(cit14)/*[position()=1]) 2003; 15
Jong (C6RA19946A-(cit26)/*[position()=1]) 2000; 77
Keuleyan (C6RA19946A-(cit10)/*[position()=1]) 2011; 133
Song (C6RA19946A-(cit28)/*[position()=1]) 2016; 27
Zhitomirsky (C6RA19946A-(cit3)/*[position()=1]) 2012; 24
Sze (C6RA19946A-(cit47)/*[position()=1]) 1981
Sun (C6RA19946A-(cit7)/*[position()=1]) 2012; 7
Liu (C6RA19946A-(cit30)/*[position()=1]) 2013; 25
Barkhouse (C6RA19946A-(cit45)/*[position()=1]) 2008; 2
Talapin (C6RA19946A-(cit18)/*[position()=1]) 2005; 310
Yang (C6RA19946A-(cit19)/*[position()=1]) 2013; 23
Kigel (C6RA19946A-(cit11)/*[position()=1]) 2007; 6596
Kigel (C6RA19946A-(cit22)/*[position()=1]) 2005; 25
Konstantatos (C6RA19946A-(cit46)/*[position()=1]) 2008; 8
Brumer (C6RA19946A-(cit17)/*[position()=1]) 2005
Zhang (C6RA19946A-(cit42)/*[position()=1]) 2013; 4
Nelson (C6RA19946A-(cit48)/*[position()=1]) 2003
Yook (C6RA19946A-(cit8)/*[position()=1]) 2014; 26
Kigel (C6RA19946A-(cit24)/*[position()=1]) 2005; vol. 5929
Chang (C6RA19946A-(cit36)/*[position()=1]) 2007; 55
Oliva (C6RA19946A-(cit32)/*[position()=1]) 2015; 5
Li (C6RA19946A-(cit33)/*[position()=1]) 2010; 5
Colvin (C6RA19946A-(cit16)/*[position()=1]) 1994; 370
Lee (C6RA19946A-(cit27)/*[position()=1]) 2008; 18
Beek (C6RA19946A-(cit31)/*[position()=1]) 2005; 109
Zarghami (C6RA19946A-(cit5)/*[position()=1]) 2010; 4
Fu (C6RA19946A-(cit29)/*[position()=1]) 2105; 6
Alivisatos (C6RA19946A-(cit2)/*[position()=1]) 1996; 271
Choi (C6RA19946A-(cit34)/*[position()=1]) 2014; 2
Fontana (C6RA19946A-(cit41)/*[position()=1]) 2011; 11
Bru (C6RA19946A-(cit6)/*[position()=1]) 1984; 80
Peng (C6RA19946A-(cit1)/*[position()=1]) 2009; 2
Luther (C6RA19946A-(cit39)/*[position()=1]) 2008; 2
Kawazoe (C6RA19946A-(cit40)/*[position()=1]) 2012; 108
Sargent (C6RA19946A-(cit4)/*[position()=1]) 2009; 3
Luther (C6RA19946A-(cit20)/*[position()=1]) 2008; 2
White (C6RA19946A-(cit25)/*[position()=1]) 2006; 89
Lifshitz (C6RA19946A-(cit23)/*[position()=1]) 2006; 110
Sykora (C6RA19946A-(cit37)/*[position()=1]) 2010; 4
Law (C6RA19946A-(cit44)/*[position()=1]) 2008; 2
Ma (C6RA19946A-(cit9)/*[position()=1]) 2009; 9
Law (C6RA19946A-(cit38)/*[position()=1]) 2008; 130
Willander (C6RA19946A-(cit35)/*[position()=1]) 2009; 11
Nam (C6RA19946A-(cit12)/*[position()=1]) 2011; 99
Hasselbarth (C6RA19946A-(cit13)/*[position()=1]) 1993; 97
Hines (C6RA19946A-(cit21)/*[position()=1]) 2003; 15
References_xml – issn: 2005
  issue: vol. 5929
  end-page: 59290F
  publication-title: Synthesis, characterization and the use of PbSe/PbS and PbSe/PbSe S core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers
  doi: Kigel Brumer Sashchiuk Sirota Galun Lifshitz
– issn: 1981
  publication-title: Physics of Semiconductor devices
  doi: Sze
– issn: 2003
  publication-title: The Physics of Solar Cells
  doi: Nelson
– volume: 80
  start-page: 4403
  year: 1984
  ident: C6RA19946A-(cit6)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447218
– volume: 5
  start-page: 1109
  year: 2015
  ident: C6RA19946A-(cit32)/*[position()=1]
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.5.001109
– volume: 23
  start-page: 255203
  year: 2013
  ident: C6RA19946A-(cit19)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/25/255203
– volume: 8
  start-page: 1446
  year: 2008
  ident: C6RA19946A-(cit46)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl080373e
– volume: 26
  start-page: 4218
  year: 2014
  ident: C6RA19946A-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306266
– volume: vol. 5929
  volume-title: Synthesis, characterization and the use of PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers
  year: 2005
  ident: C6RA19946A-(cit24)/*[position()=1]
– volume-title: The Physics of Solar Cells
  year: 2003
  ident: C6RA19946A-(cit48)/*[position()=1]
  doi: 10.1142/p276
– volume: 310
  start-page: 86
  year: 2005
  ident: C6RA19946A-(cit18)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1116703
– volume: 2
  start-page: 425
  year: 2009
  ident: C6RA19946A-(cit1)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-009-9047-2
– volume: 15
  start-page: 1844
  year: 2003
  ident: C6RA19946A-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305395
– volume-title: Physics of Semiconductor devices
  year: 1981
  ident: C6RA19946A-(cit47)/*[position()=1]
– volume: 133
  start-page: 16422
  year: 2011
  ident: C6RA19946A-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2079509
– volume: 6
  start-page: 65201
  year: 2105
  ident: C6RA19946A-(cit29)/*[position()=1]
  publication-title: Nanotechnology
– volume: 2
  start-page: 271
  year: 2008
  ident: C6RA19946A-(cit39)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn7003348
– volume: 3
  start-page: 325
  year: 2009
  ident: C6RA19946A-(cit4)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.89
– volume: 77
  start-page: 2255
  year: 2000
  ident: C6RA19946A-(cit26)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1315344
– volume: 99
  start-page: 233115
  year: 2011
  ident: C6RA19946A-(cit12)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3669515
– volume: 7
  start-page: 369
  year: 2012
  ident: C6RA19946A-(cit7)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.63
– volume: 130
  start-page: 5974
  year: 2008
  ident: C6RA19946A-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800040c
– volume: 97
  start-page: 5333
  year: 1993
  ident: C6RA19946A-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100122a026
– volume: 2
  start-page: 98
  year: 2014
  ident: C6RA19946A-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC31478B
– volume: 4
  start-page: 2475
  year: 2010
  ident: C6RA19946A-(cit5)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn100339b
– volume: 25
  start-page: 604
  year: 2005
  ident: C6RA19946A-(cit22)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2005.06.010
– volume: 2
  start-page: 271
  year: 2008
  ident: C6RA19946A-(cit44)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn7003348
– volume: 11
  start-page: 869
  year: 2011
  ident: C6RA19946A-(cit41)/*[position()=1]
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2010.2068542
– volume: 6596
  start-page: 95960H
  year: 2007
  ident: C6RA19946A-(cit11)/*[position()=1]
  publication-title: Proc. SPIE
– volume: 5
  start-page: 1836
  year: 2010
  ident: C6RA19946A-(cit33)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9721-z
– volume: 15
  start-page: 1862
  year: 2003
  ident: C6RA19946A-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305449
– volume: 25
  start-page: 5772
  year: 2013
  ident: C6RA19946A-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302340
– volume: 271
  start-page: 933
  year: 1996
  ident: C6RA19946A-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– start-page: 1111
  year: 2005
  ident: C6RA19946A-(cit17)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400620
– volume: 4
  start-page: 1811
  year: 2013
  ident: C6RA19946A-(cit42)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2830
– volume: 2
  start-page: 2356
  year: 2008
  ident: C6RA19946A-(cit45)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn800471c
– volume: 110
  start-page: 25356
  year: 2006
  ident: C6RA19946A-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0644356
– volume: 11
  start-page: 125020
  year: 2009
  ident: C6RA19946A-(cit35)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/12/125020
– volume: 4
  start-page: 159
  year: 2004
  ident: C6RA19946A-(cit15)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0345116
– volume: 370
  start-page: 354
  year: 1994
  ident: C6RA19946A-(cit16)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/370354a0
– volume: 27
  start-page: 165202
  year: 2016
  ident: C6RA19946A-(cit28)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/16/165202
– volume: 109
  start-page: 9505
  year: 2005
  ident: C6RA19946A-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050745x
– volume: 2
  start-page: 271
  year: 2008
  ident: C6RA19946A-(cit20)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn7003348
– volume: 89
  start-page: 143517
  year: 2006
  ident: C6RA19946A-(cit25)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2359579
– volume: 24
  start-page: 6181
  year: 2012
  ident: C6RA19946A-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202825
– volume: 55
  start-page: 329
  issue: 1
  year: 2007
  ident: C6RA19946A-(cit36)/*[position()=1]
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.08.030
– volume: 108
  start-page: 51
  year: 2012
  ident: C6RA19946A-(cit40)/*[position()=1]
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-012-5077-7
– volume: 18
  start-page: 2246
  year: 2008
  ident: C6RA19946A-(cit27)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700766
– volume: 4
  start-page: 2021
  year: 2010
  ident: C6RA19946A-(cit37)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn100131w
– volume: 6
  start-page: 44514
  year: 2016
  ident: C6RA19946A-(cit43)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA25761A
– volume: 9
  start-page: 1699
  year: 2009
  ident: C6RA19946A-(cit9)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl900388a
SSID ssj0000651261
Score 2.3338888
Snippet Semiconductor quantum dots (QDs) have been the subject for wide research studies owing to their quantum confinement effect. Photodetectors or photodiodes are...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8773
SubjectTerms absorption
Devices
Electrodes
energy
indium tin oxide
Interlayers
ligands
lighting
mole fraction
nanocrystals
Photodiodes
photoluminescence
Photosensitivity
production costs
Quantum dots
selenium
Semiconductors
sulfur
Zinc oxide
Title High performance solution-processed infrared photodiode based on ternary PbSxSe1−x colloidal quantum dots
URI https://www.proquest.com/docview/1845806252
https://www.proquest.com/docview/2253234280
Volume 6
WOSCitedRecordID wos000384232600114&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CxJcEK8VXR4yAg6oCts4ieMcUQXaA7tabQvsLXL8oIFtUtJm6V44c-Yn8NP4JYzzcApbpOXAJUodu278fR3P2OMZhJ4GMqFS-r7DiEgcn4McTJiWDvcU9ZWKXFHlIXv3Jjw8ZCcn0VGv96M9C3N2GmYZW62i-X-FGsoAbHN09h_gtl8KBXAPoMMVYIfrpYA3nhsmGrE9D9B258zrQwHKhFvSReV5Pp_my1ymuVQDM5_Jau_ALBEW54OjZLwaK7dyh2DPIrIaGNLkqQRUP5eASDkbgE27WNdvj8ej1q3AKuvjElhXr7MelFM-m3FpZU27Wj1V2Yfz1LZo_IQnPP-4Rt_3Te19nn9R6fp6hUuNc0V9TrQWawQscgCsTtDyQm0oa-QyXaNfnVK0EbIsDJu9HGU_hxung6FnoqmO6LEJ7utTG1C1i7n9x1xoPRSrvXkviru2W-gKCYPIuA0efO3W8UCFc0kVlte-RBsF14v2uua_6z2dMbNVtJlmKo1mchPdaEwR_LKm0C3UU9ltdG3UZgC8gz4ZKuE1KuGLVMItlXBHJVxRCecZbqiEGyr9_PZ9hS2JcEMibEh0F719_Woy2nea5ByOgGFYOlpSTrwkYCpMhppqJRhotzRxPQk6PqMg2HUkA0k1EZoQphVIfkIZqJccbN7E20HbWZ6pewhHnhYgSxJoFPl-IhMmmGKhiFw51GIY9NHzduhi0USuNwlUTuOLKPXRE1t3Xsdr2VjrcYtADGNq9sh4pvJyEbvMD-BFSED-XgemQI94YLcP-2gH4LMdCVrwqgPeR7ubH8RzqXcv9Rvvo-vd3-cB2l4WpXqIroqzZbooHlUk_AV9wbYI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+performance+solution-processed+infrared+photodiode+based+on+ternary+PbSxSe1%E2%88%92x+colloidal+quantum+dots&rft.jtitle=RSC+advances&rft.au=Sulaman%2C+Muhammad&rft.au=Yang%2C+Shengyi&rft.au=Song%2C+Taojian&rft.au=Wang%2C+Haowei&rft.date=2016-09-14&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=6&rft.issue=90&rft.spage=87730&rft.epage=87737&rft_id=info:doi/10.1039%2FC6RA19946A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6RA19946A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon