Disentangled Pseudo-Bag Augmentation for Whole Slide Image Multiple Instance Learning

As the predominant approach for pathological whole slide image (WSI) classification, multiple instance learning (MIL) methods struggle with limited labeled WSIs. Although MIL has achieved notable progress with pseudo-bag-oriented augmentation methods, their effectiveness is often constrained by nois...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 44; no. 11; pp. 4181 - 4197
Main Authors: Dong, Jiuyang, Jiang, Junjun, Jiang, Kui, Li, Jiahan, Cai, Linghan, Zhang, Yongbing
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2025
Subjects:
ISSN:0278-0062, 1558-254X, 1558-254X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As the predominant approach for pathological whole slide image (WSI) classification, multiple instance learning (MIL) methods struggle with limited labeled WSIs. Although MIL has achieved notable progress with pseudo-bag-oriented augmentation methods, their effectiveness is often constrained by noisy pseudo-labels and low-quality pseudo-bags. To overcome these problems, we revisit the use of pseudo-bags for WSI data augmentation and propose a new pseudo-bag generation paradigm, dubbed DPBAug. Its distinctive features can be summarized as: i) We develop an intra-slide pseudo-bag generation module, which separates the heterogeneous instances within each slide through phenotype partitioning. Moreover, to ensure accurate label inheritance when generating pseudo-bags, we propose an instance sampling algorithm with replacement. ii) An inter-slide pseudo-bag fusion module is designed to integrate heterogeneous information across multiple WSIs, producing high-quality training samples that better leverage the potential of neural networks. iii) A pseudo-bag memory update module prioritizes valuable synthetic pseudo-bags. This further enhances the network's classification performance. Extensive experiments demonstrate that DPBAug surpasses existing augmentation methods, enhancing the classification performance and reliability of multiple MIL baselines across various public datasets. DPBAug also improves the generalization and data efficiency of existing MIL methods, facilitating their adoption in clinical practice and rare cancer research The project is available at: https://github.com/JiuyangDong/DPBAug .
AbstractList As the predominant approach for pathological whole slide image (WSI) classification, multiple instance learning (MIL) methods struggle with limited labeled WSIs. Although MIL has achieved notable progress with pseudo-bag-oriented augmentation methods, their effectiveness is often constrained by noisy pseudo-labels and low-quality pseudo-bags. To overcome these problems, we revisit the use of pseudo-bags for WSI data augmentation and propose a new pseudo-bag generation paradigm, dubbed DPBAug. Its distinctive features can be summarized as: i) We develop an intra-slide pseudo-bag generation module, which separates the heterogeneous instances within each slide through phenotype partitioning. Moreover, to ensure accurate label inheritance when generating pseudo-bags, we propose an instance sampling algorithm with replacement. ii) An inter-slide pseudo-bag fusion module is designed to integrate heterogeneous information across multiple WSIs, producing high-quality training samples that better leverage the potential of neural networks. iii) A pseudo-bag memory update module prioritizes valuable synthetic pseudo-bags. This further enhances the network's classification performance. Extensive experiments demonstrate that DPBAug surpasses existing augmentation methods, enhancing the classification performance and reliability of multiple MIL baselines across various public datasets. DPBAug also improves the generalization and data efficiency of existing MIL methods, facilitating their adoption in clinical practice and rare cancer research The project is available at: https://github.com/JiuyangDong/DPBAug.
As the predominant approach for pathological whole slide image (WSI) classification, multiple instance learning (MIL) methods struggle with limited labeled WSIs. Although MIL has achieved notable progress with pseudo-bag-oriented augmentation methods, their effectiveness is often constrained by noisy pseudo-labels and low-quality pseudo-bags. To overcome these problems, we revisit the use of pseudo-bags for WSI data augmentation and propose a new pseudo-bag generation paradigm, dubbed DPBAug. Its distinctive features can be summarized as: i) We develop an intra-slide pseudobag generation module, which separates the heterogeneous instances within each slide through phenotype partitioning. Moreover, to ensure accurate label inheritance when generating pseudo-bags, we propose an instance sampling algorithm with replacement. ii) An inter-slide pseudo-bag fusion module is designed to integrate heterogeneous information across multiple WSIs, producing high-quality training samples that better leverage the potential of neural networks. iii) A pseudo-bag memory update module prioritizes valuable synthetic pseudo-bags. This further enhances the network's classification performance. Extensive experiments demonstrate that DPBAug surpasses existing augmentation methods, enhancing the classification performance and reliability of multiple MIL baselines across various public datasets. DPBAug also improves the generalization and data efficiency of existing MIL methods, facilitating their adoption in clinical practice and rare cancer research. The project is available at: https://github.com/JiuyangDong/DPBAug.As the predominant approach for pathological whole slide image (WSI) classification, multiple instance learning (MIL) methods struggle with limited labeled WSIs. Although MIL has achieved notable progress with pseudo-bag-oriented augmentation methods, their effectiveness is often constrained by noisy pseudo-labels and low-quality pseudo-bags. To overcome these problems, we revisit the use of pseudo-bags for WSI data augmentation and propose a new pseudo-bag generation paradigm, dubbed DPBAug. Its distinctive features can be summarized as: i) We develop an intra-slide pseudobag generation module, which separates the heterogeneous instances within each slide through phenotype partitioning. Moreover, to ensure accurate label inheritance when generating pseudo-bags, we propose an instance sampling algorithm with replacement. ii) An inter-slide pseudo-bag fusion module is designed to integrate heterogeneous information across multiple WSIs, producing high-quality training samples that better leverage the potential of neural networks. iii) A pseudo-bag memory update module prioritizes valuable synthetic pseudo-bags. This further enhances the network's classification performance. Extensive experiments demonstrate that DPBAug surpasses existing augmentation methods, enhancing the classification performance and reliability of multiple MIL baselines across various public datasets. DPBAug also improves the generalization and data efficiency of existing MIL methods, facilitating their adoption in clinical practice and rare cancer research. The project is available at: https://github.com/JiuyangDong/DPBAug.
Author Li, Jiahan
Jiang, Kui
Cai, Linghan
Zhang, Yongbing
Dong, Jiuyang
Jiang, Junjun
Author_xml – sequence: 1
  givenname: Jiuyang
  orcidid: 0009-0008-2114-3525
  surname: Dong
  fullname: Dong, Jiuyang
  email: jiuyang.dong@stu.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Junjun
  orcidid: 0000-0002-5694-505X
  surname: Jiang
  fullname: Jiang, Junjun
  email: jiangjunjun@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Kui
  orcidid: 0000-0002-4055-7503
  surname: Jiang
  fullname: Jiang, Kui
  email: jiangkui@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Jiahan
  orcidid: 0000-0003-2541-5280
  surname: Li
  fullname: Li, Jiahan
  email: jiahan.li@stu.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 5
  givenname: Linghan
  surname: Cai
  fullname: Cai, Linghan
  email: cailh@stu.hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
– sequence: 6
  givenname: Yongbing
  orcidid: 0000-0003-3320-2904
  surname: Zhang
  fullname: Zhang, Yongbing
  email: ybzhang08@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40366836$$D View this record in MEDLINE/PubMed
BookMark eNpFkE1Pg0AQhjemxn7o3YMxHL1QZz-Bo9Yvkjaa2EZvZIFZxMBSWTj476Vp1cxhkpnnfQ_PlIxsY5GQcwpzSiG6Xq_iOQMm51yqKBL0iEyolKHPpHgfkQmwIPQBFBuTqXOfAFRIiE7IWABXKuRqQjZ3pUPbaVtUmHsvDvu88W914d30Rb17dGVjPdO03ttHU6H3WpU5enGtC_RWfdWV2-EYWzc0ZOgtUbe2tMUpOTa6cnh22DOyebhfL5785fNjvLhZ-hkLZOebMNU8D7mOUiaU1JEKRBDyLM2BRwFmJoOcZwGKYQwXUarAQC5RmJQaISmfkat977Ztvnp0XVKXLsOq0hab3iWcgeBMhYEY0MsD2qc15sm2LWvdfie_KgYA9kDWNs61aP4QCsnOdjLYTna2k4PtIXKxj5SI-I9TAEGV4D9NVnqS
CODEN ITMID4
Cites_doi 10.2307/2346830
10.1016/j.media.2024.103289
10.48550/arxiv.1710.09412
10.1016/j.media.2019.101544
10.1109/tai.2024.3454591
10.1038/s41551-020-00682-w
10.1038/s41586-024-07441-w
10.1109/CVPR46437.2021.01409
10.1109/CVPR52688.2022.01824
10.1038/s41591-024-02857-3
10.1038/s41467-021-25296-x
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.1080/00224065.1986.11979014
10.1109/CVPR52729.2023.01503
10.5555/3454287.3455008
10.1109/CVPR.2015.7298780
10.1007/978-3-319-66179-7_69
10.1038/s41591-023-02504-3
10.1001/jama.2017.14585
10.1016/j.ccell.2022.07.004
10.1109/CVPR.2016.90
10.1007/978-3-031-72083-3_28
10.1007/978-3-031-43987-2_46
10.1007/978-3-030-87199-4_11
10.1093/bioinformatics/btw252
10.1038/s43018-022-00416-8
10.1109/CVPR52733.2024.01070
10.1109/TMI.2018.2867350
10.1109/CVPR52729.2023.02292
10.1038/s44222-023-00096-8
10.1109/CVPR.2009.5206848
10.1007/978-3-031-16434-7_4
10.1109/CVPR52688.2022.01567
10.1109/TMI.2021.3097319
10.1016/j.patcog.2017.08.026
10.1038/s41467-024-51465-9
10.1609/aaai.v31i1.10890
10.1109/TMI.2024.3351213
10.1109/ISBI53787.2023.10230723
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TMI.2025.3569941
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 4197
ExternalDocumentID 40366836
10_1109_TMI_2025_3569941
11004164
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62031023; 62331011
– fundername: Shenzhen Science and Technology Project
  grantid: GXWD20220818170353009
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c275t-f8ba3d83a9b2465a9674783cbd0397ecfc0d3c7e4e4ef349b60f0d5e4fb1f4513
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001616144400033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Thu Oct 02 23:23:19 EDT 2025
Fri Nov 07 01:55:23 EST 2025
Sat Nov 29 06:52:22 EST 2025
Wed Nov 19 08:27:20 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-f8ba3d83a9b2465a9674783cbd0397ecfc0d3c7e4e4ef349b60f0d5e4fb1f4513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2541-5280
0009-0008-2114-3525
0000-0002-4055-7503
0000-0003-3320-2904
0000-0002-5694-505X
PMID 40366836
PQID 3204326874
PQPubID 23479
PageCount 17
ParticipantIDs pubmed_primary_40366836
crossref_primary_10_1109_TMI_2025_3569941
ieee_primary_11004164
proquest_miscellaneous_3204326874
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
Liu (ref32)
ref17
ref16
ref18
Maron (ref5); 10
ref46
ref45
ref48
ref47
ref42
Dosovitskiy (ref29) 2020
ref41
ref44
ref43
ref49
Maaten (ref36) 2008; 9
ref7
ref9
ref4
Yang (ref19) 2023
Ilse (ref25)
ref40
Shao (ref26)
ref35
ref34
ref37
ref31
ref30
ref33
Keeler (ref6); 3
ref2
ref1
ref39
ref38
ref24
ref23
ref20
Wang (ref3); 35
ref22
ref21
ref28
ref27
Ramon (ref8)
References_xml – ident: ref39
  doi: 10.2307/2346830
– ident: ref42
  doi: 10.1016/j.media.2024.103289
– ident: ref34
  doi: 10.48550/arxiv.1710.09412
– start-page: 53
  volume-title: Proc. ICML- Workshop Attribute-Value Relational Learn.
  ident: ref8
  article-title: Multi instance neural networks
– ident: ref11
  doi: 10.1016/j.media.2019.101544
– ident: ref16
  doi: 10.1109/tai.2024.3454591
– ident: ref27
  doi: 10.1038/s41551-020-00682-w
– ident: ref41
  doi: 10.1038/s41586-024-07441-w
– ident: ref24
  doi: 10.1109/CVPR46437.2021.01409
– ident: ref20
  doi: 10.1109/CVPR52688.2022.01824
– start-page: 253
  volume-title: Proc. Asian Conf. Mach. Learn.
  ident: ref32
  article-title: Key instance detection in multi-instance learning
– ident: ref44
  doi: 10.1038/s41591-024-02857-3
– ident: ref12
  doi: 10.1038/s41467-021-25296-x
– ident: ref49
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– ident: ref38
  doi: 10.1080/00224065.1986.11979014
– ident: ref2
  doi: 10.1109/CVPR52729.2023.01503
– ident: ref40
  doi: 10.5555/3454287.3455008
– ident: ref9
  doi: 10.1109/CVPR.2015.7298780
– ident: ref7
  doi: 10.1007/978-3-319-66179-7_69
– start-page: 2127
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref25
  article-title: Attention-based deep multiple instance learning
– ident: ref43
  doi: 10.1038/s41591-023-02504-3
– ident: ref31
  doi: 10.1001/jama.2017.14585
– ident: ref45
  doi: 10.1016/j.ccell.2022.07.004
– ident: ref28
  doi: 10.1109/CVPR.2016.90
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref36
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 557
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref6
  article-title: Integrated segmentation and recognition of hand-printed numerals
– volume: 35
  start-page: 18009
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: SCL-WC: Cross-slide contrastive learning for weakly-supervised whole-slide image classification
– ident: ref37
  doi: 10.1007/978-3-031-72083-3_28
– ident: ref23
  doi: 10.1007/978-3-031-43987-2_46
– ident: ref13
  doi: 10.1007/978-3-030-87199-4_11
– year: 2020
  ident: ref29
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref4
  doi: 10.1093/bioinformatics/btw252
– ident: ref46
  doi: 10.1038/s43018-022-00416-8
– volume: 10
  start-page: 570
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref5
  article-title: A framework for multiple-instance learning
– ident: ref14
  doi: 10.1109/CVPR52733.2024.01070
– ident: ref33
  doi: 10.1109/TMI.2018.2867350
– ident: ref18
  doi: 10.1109/CVPR52729.2023.02292
– start-page: 2136
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: TransMIL: Transformer based correlated multiple instance learning for whole slide image classification
– ident: ref47
  doi: 10.1038/s44222-023-00096-8
– ident: ref30
  doi: 10.1109/CVPR.2009.5206848
– ident: ref17
  doi: 10.1007/978-3-031-16434-7_4
– year: 2023
  ident: ref19
  article-title: ProtoDiv: Prototype-guided division of consistent pseudo-bags for whole-slide image classification
  publication-title: arXiv:2304.06652
– ident: ref1
  doi: 10.1109/CVPR52688.2022.01567
– ident: ref22
  doi: 10.1109/TMI.2021.3097319
– ident: ref35
  doi: 10.1016/j.patcog.2017.08.026
– ident: ref48
  doi: 10.1038/s41467-024-51465-9
– ident: ref10
  doi: 10.1609/aaai.v31i1.10890
– ident: ref21
  doi: 10.1109/TMI.2024.3351213
– ident: ref15
  doi: 10.1109/ISBI53787.2023.10230723
SSID ssj0014509
Score 2.512236
Snippet As the predominant approach for pathological whole slide image (WSI) classification, multiple instance learning (MIL) methods struggle with limited labeled...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4181
SubjectTerms Accuracy
Algorithms
Cancer
Data augmentation
Data mining
Feature extraction
Humans
Image Interpretation, Computer-Assisted - methods
Machine Learning
multiple instance learning
Multiple-Instance Learning Algorithms
Neural Networks, Computer
Pathology
Phenotypes
Probability
Training
Tumors
Whole slide image classification
Title Disentangled Pseudo-Bag Augmentation for Whole Slide Image Multiple Instance Learning
URI https://ieeexplore.ieee.org/document/11004164
https://www.ncbi.nlm.nih.gov/pubmed/40366836
https://www.proquest.com/docview/3204326874
Volume 44
WOSCitedRecordID wos001616144400033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BhVbLgd0tLJRlkVfaC4dAGj8SH8tL20NRpW1Fb1Fsj6tKkK5ow-_HdlzgwmGVSw7OQzMT-3Nmvm8AfitDBTJhE8N9C7MKRVIwmieao9thG4myr0KzifzurpjN5DiS1QMXBhFD8Rme-9OQyzdL3fhfZRdB3szh-23YznPRkrVeUwaMt_UcmZeMTUW2yUmm8mIyGrqdYMbPKRdSMt8dhrmZW7TCzG_LUeiv8jHUDEvO7Zf_fNmvsBexJRm0wfANtrDuwu47xcEufBrFXPo-TK8XgXhUzx_QkPEKG7NMLqs5GTTzx8hIqonDtOTe99Alfx8WBsnw0U1AZBTLEMkwoEuNJOq0zg9genszufqTxCYLic5yvk5soSpqClpJlTHBKym8oj7VyqQOqqC2OjVU58jcYSmTSqQ2NRyZVX3LeJ9-h069rPEISO6wj7IKK-tQTeUs3ddezo9yJaUxyvbgbGPr8l-rpVGGPUgqS-ei0ruojC7qwYE36du4aM0e_Np4p3Qfgs9uVDUum1VJPcs3E0Xuxhy2bnu9euPt4w_u-gM--4e3HMMT6KyfGvwJO_p5vVg9nbpomxWnIdpeAPrszr4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqEo50JZHWaCtK3HpIUs2fiQ-8hSrsiukLoJbFNvj1UqQrdhNfz-24wUuHFAuOTiRNePY32Tm-wbgUBkqkAmbGO5bmFUokoLRPNEcXYRtJMqeCs0m8uGwuLuT15GsHrgwiBiKz7Drb0Mu30x143-VHQV5M4fvl2GVM5alLV3rOWnAeFvRkXnR2FRki6xkKo9Gg76LBTPepVxIyXx_GOb2btFKM78cSKHDyttgMxw6F5_fOd0vsBHRJTlul8NXWMJ6E9ZfaQ5uwsdBzKZvwc3ZJFCP6vE9GnI9w8ZMk5NqTI6b8UPkJNXEoVpy67vokr_3E4Ok_-C2IDKIhYikH_ClRhKVWsfbcHNxPjq9TGKbhURnOZ8ntlAVNQWtpMqY4JUUXlOfamVSB1ZQW50aqnNk7rKUSSVSmxqOzKqeZbxHd2Clnta4CyR36EdZhZV1uKZylu5pL-hHuZLSGGU78Hth6_Jfq6ZRhigklaVzUeldVEYXdWDbm_RlXLRmB34tvFO6T8HnN6oap82spJ7nm4kid2O-tW57fnrh7b033voT1i5Hg6vyqj_8sw-f_ERaxuEBrMwfG_wOH_T_-WT2-COsuScHHtEd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangled+Pseudo-bag+Augmentation+for+Whole+Slide+Image+Multiple+Instance+Learning&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Dong%2C+Jiuyang&rft.au=Jiang%2C+Junjun&rft.au=Jiang%2C+Kui&rft.au=Li%2C+Jiahan&rft.date=2025-11-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=PP&rft_id=info:doi/10.1109%2FTMI.2025.3569941&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon