Unveiling critical transition in a transport network model: stochasticity and early warning signals

Abrupt shifts between stable states frequently occur in complex systems, from natural phenomena like ecosystem collapse to engineered systems namely traffic flow. These transitions, which can be sudden and severe, are anticipated using statistical tools or early warning signals (EWSs), valued for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 113; H. 13; S. 16401 - 16426
Hauptverfasser: Chattopadhyay, Shankha Narayan, Gupta, Arvind Kumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Nature B.V 01.07.2025
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Abrupt shifts between stable states frequently occur in complex systems, from natural phenomena like ecosystem collapse to engineered systems namely traffic flow. These transitions, which can be sudden and severe, are anticipated using statistical tools or early warning signals (EWSs), valued for their broad applicability. This study examines a two-dimensional autonomous vehicular traffic flow model and extends it with a stochastic version using a multiplicative Gaussian process. PRCC analysis is conducted to gain an in-depth understanding of the model’s robustness and assess how variations in different parameter configurations affect the results. Detailed bifurcation analysis reveals important characteristics of the deterministic model, including bistability, tristability, and tetrastability. Phase portraits and basin stability measures further investigate these bifurcation results. It is revealed that transitions between low-density and high-density traffic regimes can occur due to saddle-node bifurcations and noise. Two-parameter diagrams pinpoint specific domains where the system achieves unique or multiple equilibrium points, illustrating how parameters influence the number of steady states. The confidence ellipse method identifies threshold noise levels signalling a shift between attractors. EWSs are utilised to predict regime shifts caused by bifurcation-induced and noise-driven transitions. In the former, variance serves as a strong predictor, effectively detecting critical shifts due to changes in exit rates, while lag-1 autocorrelation proves less reliable. In the stochastic switching context, lag-1 autocorrelation performs marginally better than variance. Additionally, conditional heteroskedasticity is also employed to detect B-tipping and N-tipping points prior. However, its performance gets hampered while anticipating the second instance. These findings suggest that EWSs can effectively predict critical traffic transitions if applied with caution. The study offers valuable insights for traffic management strategies to anticipate and alleviate congestion in urban networks.
AbstractList Abrupt shifts between stable states frequently occur in complex systems, from natural phenomena like ecosystem collapse to engineered systems namely traffic flow. These transitions, which can be sudden and severe, are anticipated using statistical tools or early warning signals (EWSs), valued for their broad applicability. This study examines a two-dimensional autonomous vehicular traffic flow model and extends it with a stochastic version using a multiplicative Gaussian process. PRCC analysis is conducted to gain an in-depth understanding of the model’s robustness and assess how variations in different parameter configurations affect the results. Detailed bifurcation analysis reveals important characteristics of the deterministic model, including bistability, tristability, and tetrastability. Phase portraits and basin stability measures further investigate these bifurcation results. It is revealed that transitions between low-density and high-density traffic regimes can occur due to saddle-node bifurcations and noise. Two-parameter diagrams pinpoint specific domains where the system achieves unique or multiple equilibrium points, illustrating how parameters influence the number of steady states. The confidence ellipse method identifies threshold noise levels signalling a shift between attractors. EWSs are utilised to predict regime shifts caused by bifurcation-induced and noise-driven transitions. In the former, variance serves as a strong predictor, effectively detecting critical shifts due to changes in exit rates, while lag-1 autocorrelation proves less reliable. In the stochastic switching context, lag-1 autocorrelation performs marginally better than variance. Additionally, conditional heteroskedasticity is also employed to detect B-tipping and N-tipping points prior. However, its performance gets hampered while anticipating the second instance. These findings suggest that EWSs can effectively predict critical traffic transitions if applied with caution. The study offers valuable insights for traffic management strategies to anticipate and alleviate congestion in urban networks.
Author Gupta, Arvind Kumar
Chattopadhyay, Shankha Narayan
Author_xml – sequence: 1
  givenname: Shankha Narayan
  orcidid: 0009-0000-1908-4206
  surname: Chattopadhyay
  fullname: Chattopadhyay, Shankha Narayan
– sequence: 2
  givenname: Arvind Kumar
  orcidid: 0000-0001-6671-6747
  surname: Gupta
  fullname: Gupta, Arvind Kumar
BookMark eNp9UE1LAzEUDKJgW_0DngKeV18222TjTYpfUPBiobeQZrM1dZvUJLX035t1PXnwNO_BzDAzY3TqvDMIXRG4IQD8NhICnBRQTgsCgvNCnKARmXJalEwsT9EIRFkVIGB5jsYxbgCAllCPkF64L2M769ZYB5usVh1OQbmYb--wdVgN_86HhJ1JBx8-8NY3prvDMXn9rmJW2XTEyjXYqNAd8UEF1ztGu3aqixforM1gLn9xghaPD2-z52L--vQyu58XuuTTVBhGBF8RwxRttaqbWqxoLZhpK1CaNKwiRCtRt4w3osofo5RyzgSoilaiNXSCrgffXfCfexOT3Ph96BNIWhJKKy4oz6x6YOngYwymlTm96tvmnraTBGQ_qRwmlXlS-TOpFFla_pHugt2qcPxP9A1GRXyy
CitedBy_id crossref_primary_10_1038_s41597_025_05674_6
crossref_primary_10_1016_j_apm_2025_116254
crossref_primary_10_1103_PhysRevE_111_054415
Cites_doi 10.1126/science.aat7850
10.1073/pnas.1312114110
10.1016/j.physd.2014.02.005
10.1007/s10021-012-9542-2
10.1126/science.1219805
10.1038/nphys2516
10.1103/PhysRevE.93.032404
10.1038/nature09389
10.1016/j.physa.2006.03.061
10.1016/j.chaos.2022.113090
10.1098/rsif.2020.0645
10.1016/j.ress.2005.11.017
10.1103/PhysRevLett.122.158701
10.1007/s11071-014-1693-6
10.1007/s11071-024-10067-2
10.1126/science.1225244
10.1142/S021812741650173X
10.1038/35098000
10.1016/j.chaos.2020.109771
10.1073/pnas.1907493117
10.1098/rspa.2006.1660
10.1098/rsta.2010.0185
10.1142/S0218127408021233
10.1142/S0129183114500454
10.1098/rspa.2021.0059
10.1103/PhysRevE.110.064218
10.1111/j.1461-0248.2005.00877.x
10.1073/pnas.2106140118
10.1016/j.jtbi.2008.04.011
10.1063/1.3647316
10.1002/ecy.4240
10.1038/nature08227
10.1098/rsta.2021.0213
10.1145/779359.779362
10.1073/pnas.1913773116
10.1111/j.1600-0706.2012.20838.x
10.1021/cr040659d
10.1086/661898
10.1063/5.0074242
10.1109/TITS.2011.2158001
10.1142/S0218127417300142
10.1098/rspb.2013.1372
10.1002/ece3.2531
10.1109/TITS.2021.3095897
10.1016/j.physa.2014.11.037
10.1063/1.5000418
10.1371/journal.pone.0041010
10.1142/S0218127414400203
10.1142/S0218127418500700
10.1109/TITS.2020.2964021
10.1016/j.physa.2020.125251
10.1016/j.cnsns.2015.03.015
10.1073/pnas.0802430105
10.1016/j.tree.2004.05.008
10.1201/9780429492563
10.1111/j.1461-0248.2008.01160.x
10.1137/S0036144500378302
10.1103/PhysRevLett.81.1130
10.1016/S0378-4371(00)00021-2
10.1088/0305-4470/38/19/002
10.1016/j.chaos.2024.115494
10.1088/1367-2630/10/3/033001
10.1016/j.cnsns.2013.09.027
10.1063/5.0202785
10.1111/oik.05172
10.1073/pnas.0705414105
10.1103/PhysRevE.59.5101
10.2307/1403510
10.1007/s00382-018-4549-9
10.1098/rsif.2020.0482
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Jul 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Jul 2025
DBID AAYXX
CITATION
DOI 10.1007/s11071-025-10977-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 16426
ExternalDocumentID 10_1007_s11071_025_10977_9
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
AESKC
ID FETCH-LOGICAL-c275t-e6197b1e6a3fca8d89b3896ef40ac1d6411ca98f67d94641633377690a4349fe3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465881800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 09:08:52 EST 2025
Tue Nov 18 22:24:59 EST 2025
Sat Nov 29 08:02:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-e6197b1e6a3fca8d89b3896ef40ac1d6411ca98f67d94641633377690a4349fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6671-6747
0009-0000-1908-4206
PQID 3213347937
PQPubID 2043746
PageCount 26
ParticipantIDs proquest_journals_3213347937
crossref_citationtrail_10_1007_s11071_025_10977_9
crossref_primary_10_1007_s11071_025_10977_9
PublicationCentury 2000
PublicationDate 2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-00
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Nonlinear dynamics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References DJ Higham (10977_CR67) 2001; 43
DA Seekell (10977_CR70) 2012; 15
H Alkhayuon (10977_CR77) 2021; 477
R Arumugam (10977_CR24) 2024; 105
A Dhooge (10977_CR61) 2003; 29
Y Sugiyama (10977_CR41) 2008; 10
V Dakos (10977_CR22) 2012; 7
T Nagatani (10977_CR38) 2023; 167
C Tu (10977_CR5) 2020; 7
PS Dutta (10977_CR72) 2018; 127
IA Leemput (10977_CR12) 2014; 111
JC Rocha (10977_CR1) 2018; 362
M Scheffer (10977_CR2) 2001; 413
AK Gupta (10977_CR47) 2015; 79
Y Sharma (10977_CR9) 2016; 93
T Nagatani (10977_CR39) 2020; 135
HY Lee (10977_CR44) 2000; 281
V Dakos (10977_CR52) 2008; 105
H Lee (10977_CR43) 1998; 81
U Feudel (10977_CR29) 2008; 18
10977_CR55
X Zhao (10977_CR30) 2014; 275
H Lee (10977_CR42) 1999; 59
HM Alkhayuon (10977_CR76) 2018; 28
A-L Barabási (10977_CR37) 2002
S Marino (10977_CR59) 2008; 254
C Boettiger (10977_CR23) 2013; 280
A Ghadami (10977_CR53) 2020; 22
PJ Menck (10977_CR62) 2013; 9
T Coulson (10977_CR26) 2004; 19
T Nagatani (10977_CR40) 2021; 561
SN Chattopadhyay (10977_CR54) 2024; 112
P Redhu (10977_CR46) 2015; 421
S Sarkar (10977_CR17) 2019; 116
CF Clements (10977_CR50) 2016; 6
JC Helton (10977_CR58) 2006; 91
K Garain (10977_CR65) 2022; 32
W-H Ai (10977_CR33) 2024; 110
DA Seekell (10977_CR69) 2011; 178
J Zhang (10977_CR73) 2011; 12
X-Q Xie (10977_CR68) 2019; 52
AK Gupta (10977_CR35) 2005; 38
TM Lenton (10977_CR4) 2008; 105
Y Meng (10977_CR11) 2020; 17
TM Bury (10977_CR20) 2021; 118
M Scheffer (10977_CR13) 2009; 461
S Kéfi (10977_CR18) 2013; 122
Y Sharma (10977_CR8) 2015; 8
I Bashkirtseva (10977_CR63) 2011; 21
SH Strogatz (10977_CR75) 2018
I Bashkirtseva (10977_CR66) 2014; 24
V Guttal (10977_CR14) 2008; 11
AK Gupta (10977_CR36) 2014; 19
M Scheffer (10977_CR7) 2012; 338
V Lucarini (10977_CR10) 2019; 122
TM Bury (10977_CR19) 2020; 17
SN Chattopadhyay (10977_CR3) 2024; 110
AK Gupta (10977_CR45) 2006; 371
A Ghadami (10977_CR6) 2021; 23
AK Gupta (10977_CR48) 2014; 25
A Saltelli (10977_CR57) 2005; 105
SR Carpenter (10977_CR16) 2006; 9
A Schadschneider (10977_CR25) 2010
G Zeng (10977_CR31) 2020; 117
AA Kurzhanskiy (10977_CR74) 2010; 368
L Dai (10977_CR15) 2012; 336
10977_CR78
C Tu (10977_CR81) 2023; 123
C Xu (10977_CR64) 2016; 26
SN Chattopadhyay (10977_CR56) 2024; 34
A Ghadami (10977_CR49) 2022; 380
C Tu (10977_CR82) 2021; 24
S Biswas (10977_CR21) 2024; 109
C Tu (10977_CR80) 2023; 175
C Tu (10977_CR79) 2024; 182
SM Blower (10977_CR60) 1994; 2024
I Bashkirtseva (10977_CR27) 2018; 28
JM Drake (10977_CR51) 2010; 467
I Bashkirtseva (10977_CR28) 2017; 27
G Orosz (10977_CR32) 2006; 462
P Redhu (10977_CR34) 2015; 27
10977_CR71
References_xml – volume: 362
  start-page: 1379
  issue: 6421
  year: 2018
  ident: 10977_CR1
  publication-title: Science
  doi: 10.1126/science.aat7850
– volume: 111
  start-page: 87
  issue: 1
  year: 2014
  ident: 10977_CR12
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1312114110
– volume: 275
  start-page: 54
  year: 2014
  ident: 10977_CR30
  publication-title: Phys. D
  doi: 10.1016/j.physd.2014.02.005
– volume: 15
  start-page: 741
  year: 2012
  ident: 10977_CR70
  publication-title: Ecosystems
  doi: 10.1007/s10021-012-9542-2
– volume: 336
  start-page: 1175
  issue: 6085
  year: 2012
  ident: 10977_CR15
  publication-title: Science
  doi: 10.1126/science.1219805
– volume: 9
  start-page: 89
  issue: 2
  year: 2013
  ident: 10977_CR62
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2516
– volume: 93
  issue: 3
  year: 2016
  ident: 10977_CR9
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.032404
– volume: 467
  start-page: 456
  issue: 7314
  year: 2010
  ident: 10977_CR51
  publication-title: Nature
  doi: 10.1038/nature09389
– volume: 371
  start-page: 674
  issue: 2
  year: 2006
  ident: 10977_CR45
  publication-title: Phys. A
  doi: 10.1016/j.physa.2006.03.061
– volume: 167
  year: 2023
  ident: 10977_CR38
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2022.113090
– volume: 17
  start-page: 20200645
  issue: 171
  year: 2020
  ident: 10977_CR11
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2020.0645
– volume: 91
  start-page: 1175
  issue: 10–11
  year: 2006
  ident: 10977_CR58
  publication-title: Reliab. Eng. Syst. Safety
  doi: 10.1016/j.ress.2005.11.017
– volume: 122
  issue: 15
  year: 2019
  ident: 10977_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.158701
– volume: 79
  start-page: 663
  year: 2015
  ident: 10977_CR47
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1693-6
– volume: 112
  start-page: 19959
  year: 2024
  ident: 10977_CR54
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-10067-2
– volume: 338
  start-page: 344
  issue: 6105
  year: 2012
  ident: 10977_CR7
  publication-title: Science
  doi: 10.1126/science.1225244
– volume: 26
  start-page: 1650173
  issue: 10
  year: 2016
  ident: 10977_CR64
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S021812741650173X
– volume: 413
  start-page: 591
  issue: 6856
  year: 2001
  ident: 10977_CR2
  publication-title: Nature
  doi: 10.1038/35098000
– volume: 135
  year: 2020
  ident: 10977_CR39
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.109771
– volume: 117
  start-page: 17528
  issue: 30
  year: 2020
  ident: 10977_CR31
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1907493117
– volume: 462
  start-page: 2643
  issue: 2073
  year: 2006
  ident: 10977_CR32
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2006.1660
– volume: 368
  start-page: 4607
  issue: 1928
  year: 2010
  ident: 10977_CR74
  publication-title: Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2010.0185
– volume: 18
  start-page: 1607
  issue: 06
  year: 2008
  ident: 10977_CR29
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127408021233
– volume-title: The new science of networks
  year: 2002
  ident: 10977_CR37
– volume: 175
  year: 2023
  ident: 10977_CR80
  publication-title: Chaos, Solitons & Fractals
– volume: 25
  start-page: 1450045
  issue: 10
  year: 2014
  ident: 10977_CR48
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183114500454
– volume: 477
  start-page: 20210059
  issue: 2254
  year: 2021
  ident: 10977_CR77
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2021.0059
– volume: 110
  issue: 6
  year: 2024
  ident: 10977_CR3
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.110.064218
– volume: 9
  start-page: 311
  issue: 3
  year: 2006
  ident: 10977_CR16
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2005.00877.x
– volume: 118
  start-page: 2106140118
  issue: 39
  year: 2021
  ident: 10977_CR20
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2106140118
– volume: 254
  start-page: 178
  issue: 1
  year: 2008
  ident: 10977_CR59
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.04.011
– volume: 21
  issue: 4
  year: 2011
  ident: 10977_CR63
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.3647316
– volume: 105
  start-page: 4240
  issue: 4
  year: 2024
  ident: 10977_CR24
  publication-title: Ecology
  doi: 10.1002/ecy.4240
– ident: 10977_CR55
– volume: 461
  start-page: 53
  issue: 7260
  year: 2009
  ident: 10977_CR13
  publication-title: Nature
  doi: 10.1038/nature08227
– volume: 380
  start-page: 20210213
  issue: 2229
  year: 2022
  ident: 10977_CR49
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2021.0213
– volume: 29
  start-page: 141
  issue: 2
  year: 2003
  ident: 10977_CR61
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/779359.779362
– volume: 116
  start-page: 26343
  issue: 52
  year: 2019
  ident: 10977_CR17
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1913773116
– volume: 122
  start-page: 641
  issue: 5
  year: 2013
  ident: 10977_CR18
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2012.20838.x
– volume: 123
  year: 2023
  ident: 10977_CR81
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 105
  start-page: 2811
  issue: 7
  year: 2005
  ident: 10977_CR57
  publication-title: Chem. Rev.
  doi: 10.1021/cr040659d
– volume: 178
  start-page: 442
  issue: 4
  year: 2011
  ident: 10977_CR69
  publication-title: Am. Nat.
  doi: 10.1086/661898
– volume: 32
  issue: 3
  year: 2022
  ident: 10977_CR65
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/5.0074242
– volume: 12
  start-page: 1624
  issue: 4
  year: 2011
  ident: 10977_CR73
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2158001
– volume: 27
  start-page: 1730014
  issue: 03
  year: 2017
  ident: 10977_CR28
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127417300142
– volume: 24
  issue: 1
  year: 2021
  ident: 10977_CR82
  publication-title: Iscience
– volume: 280
  start-page: 20131372
  issue: 1766
  year: 2013
  ident: 10977_CR23
  publication-title: Proc. R. Soc. B: Biol. Sci.
  doi: 10.1098/rspb.2013.1372
– volume: 6
  start-page: 7787
  issue: 21
  year: 2016
  ident: 10977_CR50
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.2531
– volume: 7
  issue: 3
  year: 2020
  ident: 10977_CR5
  publication-title: R. Soc. Open Sci.
– volume: 23
  start-page: 10803
  issue: 8
  year: 2021
  ident: 10977_CR6
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3095897
– volume: 109
  issue: 2
  year: 2024
  ident: 10977_CR21
  publication-title: Phys. Rev. E
– volume: 421
  start-page: 249
  year: 2015
  ident: 10977_CR46
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2014.11.037
– volume: 8
  start-page: 163
  year: 2015
  ident: 10977_CR8
  publication-title: Thyroid Res.
– volume: 28
  issue: 3
  year: 2018
  ident: 10977_CR76
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5000418
– volume: 7
  start-page: 41010
  issue: 7
  year: 2012
  ident: 10977_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0041010
– ident: 10977_CR71
– volume: 24
  start-page: 1440020
  issue: 08
  year: 2014
  ident: 10977_CR66
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127414400203
– volume: 110
  issue: 4
  year: 2024
  ident: 10977_CR33
  publication-title: Phys. Rev. E
– volume: 28
  start-page: 1850070
  issue: 06
  year: 2018
  ident: 10977_CR27
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127418500700
– volume: 22
  start-page: 1196
  issue: 2
  year: 2020
  ident: 10977_CR53
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2964021
– volume: 561
  year: 2021
  ident: 10977_CR40
  publication-title: Phys. A
  doi: 10.1016/j.physa.2020.125251
– volume: 27
  start-page: 263
  issue: 1–3
  year: 2015
  ident: 10977_CR34
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2015.03.015
– volume: 105
  start-page: 14308
  issue: 38
  year: 2008
  ident: 10977_CR52
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0802430105
– volume: 182
  year: 2024
  ident: 10977_CR79
  publication-title: Chaos, Solitons & Fractals
– volume: 19
  start-page: 359
  issue: 7
  year: 2004
  ident: 10977_CR26
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2004.05.008
– volume-title: Stochastic Transport in Complex Systems: from Molecules to Vehicles
  year: 2010
  ident: 10977_CR25
– volume-title: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering
  year: 2018
  ident: 10977_CR75
  doi: 10.1201/9780429492563
– volume: 11
  start-page: 450
  issue: 5
  year: 2008
  ident: 10977_CR14
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01160.x
– volume: 43
  start-page: 525
  issue: 3
  year: 2001
  ident: 10977_CR67
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500378302
– volume: 81
  start-page: 1130
  issue: 5
  year: 1998
  ident: 10977_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.1130
– volume: 281
  start-page: 78
  issue: 1–4
  year: 2000
  ident: 10977_CR44
  publication-title: Phys. A
  doi: 10.1016/S0378-4371(00)00021-2
– volume: 38
  start-page: 4069
  issue: 19
  year: 2005
  ident: 10977_CR35
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/38/19/002
– ident: 10977_CR78
  doi: 10.1016/j.chaos.2024.115494
– volume: 10
  issue: 3
  year: 2008
  ident: 10977_CR41
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/3/033001
– volume: 19
  start-page: 1600
  issue: 5
  year: 2014
  ident: 10977_CR36
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.09.027
– volume: 34
  start-page: 073107
  issue: 7
  year: 2024
  ident: 10977_CR56
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/5.0202785
– volume: 127
  start-page: 1251
  issue: 9
  year: 2018
  ident: 10977_CR72
  publication-title: Oikos
  doi: 10.1111/oik.05172
– volume: 105
  start-page: 1786
  issue: 6
  year: 2008
  ident: 10977_CR4
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0705414105
– volume: 59
  start-page: 5101
  issue: 5
  year: 1999
  ident: 10977_CR42
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.59.5101
– volume: 2024
  start-page: 229
  year: 1994
  ident: 10977_CR60
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403510
– volume: 52
  start-page: 6863
  year: 2019
  ident: 10977_CR68
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-018-4549-9
– volume: 17
  start-page: 20200482
  issue: 170
  year: 2020
  ident: 10977_CR19
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2020.0482
SSID ssj0003208
Score 2.455638
Snippet Abrupt shifts between stable states frequently occur in complex systems, from natural phenomena like ecosystem collapse to engineered systems namely traffic...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 16401
SubjectTerms Autocorrelation
Bifurcation theory
Complex systems
Density
Gaussian process
Noise levels
Noise threshold
Parameter identification
Traffic congestion
Traffic flow
Traffic management
Traffic models
Two dimensional flow
Variance
Title Unveiling critical transition in a transport network model: stochasticity and early warning signals
URI https://www.proquest.com/docview/3213347937
Volume 113
WOSCitedRecordID wos001465881800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA5jeNCD06k4nZKDNy02TdYk3kQcHmQIurFbSZMUB1JlrfPvm5dm6kCFHQttKC_Je9-XvPc9hM5kYkDz0USJZgMoyVGRElZHKhXChV_GtM_yndzz0UhMp_KhhS7-vMG_rIChOMqbgGKmhAtH53BJ2hRrPU6-3C5NfPu52BEKOHyYhgqZ34dYjUKrTthHlmFnvX_aQdsBQeLrZsp3UcuWXdQJaBKHvVp10dYPqcE9pMflws6g9hzr0N0A1xCnfMoWnpVYNc-Ax3HZJIdj3yfnCjuAqJ8VKDo7zI5VabAFXWT80RyrYEgCcct4H42Ht083d1FosBDphA_qyDr2xHNiU0ULrYQRMnf4JbUFi5UmJmWEaCVFkXIjWQrQjVLOHZ9WjDJZWHqA2uVraQ8RLqgwhjlfyYVlcS5zRxMLYpSN46JQkvQQWRo800F9HJpgvGTfuslg08zZ1N-K80z20PnXN2-N9sa_b_eX85iFfVhlNHEcHA4P-dFagx2jzQRm1-fl9lG7nr_bE7ShF_Wsmp_6hfcJYzHPYA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+critical+transition+in+a+transport+network+model%3A+stochasticity+and+early+warning+signals&rft.jtitle=Nonlinear+dynamics&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=13&rft.spage=16401&rft.epage=16426&rft_id=info:doi/10.1007%2Fs11071-025-10977-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon