A Hybrid Model for Prediction of Diabetes Using Machine Learning Classification Algorithms and Random Projection
The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research predictions and studies aid in preventative care by offering effective interventions and monitoring. One of the diseases that is spreading fastest in...
Uloženo v:
| Vydáno v: | Wireless personal communications Ročník 139; číslo 3; s. 1437 - 1449 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Nature B.V
01.12.2024
|
| Témata: | |
| ISSN: | 0929-6212, 1572-834X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research predictions and studies aid in preventative care by offering effective interventions and monitoring. One of the diseases that is spreading fastest in the world is diabetes, which needs to be monitored constantly. We investigate various machine learning techniques that will aid in the early diagnosis of this disease to verify this. In this study, a reliable diabetes prediction system using Random Projection feature reduction has been developed. the hybrid approach of random projection with machine learning classification algorithms can be used for disease prediction. In the field of medical informatics, high-dimensional data, such as gene expression data or imaging data, is often used to predict diseases or diagnose conditions. The use of random projection in combination with machine learning classification algorithms can help reduce the dimensionality of the data and improve the accuracy of disease prediction. Three steps make up the proposed framework's overall process: (1) Pre-processing (2) Dimensionality reduction using Random Projection (3) Prediction using Hybrid Classifier. For categorization, a number of Machine Learning (ML) methods are employed, including Bayesian Net, Ada Boost, Logit Boost, Decision Table and Hoeffding Tree. This study investigated whether RP is best suited for use with machine learning methods to increase illness prediction accuracy. In this case, the dataset from the repository of UCI is used for testing in order to assess the system's performance and compare it to assessment criteria such as classification accuracy, True Positive ROC Curve, PRC Curve and Precision. The results of this study suggest that the proposed hybrid method is an effective and reliable approach for improving disease prediction accuracy, potentially aiding in earlier diagnosis and better healthcare outcomes. |
|---|---|
| AbstractList | The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research predictions and studies aid in preventative care by offering effective interventions and monitoring. One of the diseases that is spreading fastest in the world is diabetes, which needs to be monitored constantly. We investigate various machine learning techniques that will aid in the early diagnosis of this disease to verify this. In this study, a reliable diabetes prediction system using Random Projection feature reduction has been developed. the hybrid approach of random projection with machine learning classification algorithms can be used for disease prediction. In the field of medical informatics, high-dimensional data, such as gene expression data or imaging data, is often used to predict diseases or diagnose conditions. The use of random projection in combination with machine learning classification algorithms can help reduce the dimensionality of the data and improve the accuracy of disease prediction. Three steps make up the proposed framework's overall process: (1) Pre-processing (2) Dimensionality reduction using Random Projection (3) Prediction using Hybrid Classifier. For categorization, a number of Machine Learning (ML) methods are employed, including Bayesian Net, Ada Boost, Logit Boost, Decision Table and Hoeffding Tree. This study investigated whether RP is best suited for use with machine learning methods to increase illness prediction accuracy. In this case, the dataset from the repository of UCI is used for testing in order to assess the system's performance and compare it to assessment criteria such as classification accuracy, True Positive ROC Curve, PRC Curve and Precision. The results of this study suggest that the proposed hybrid method is an effective and reliable approach for improving disease prediction accuracy, potentially aiding in earlier diagnosis and better healthcare outcomes. |
| Author | Poornima, V. R., RamyaDevi |
| Author_xml | – sequence: 1 givenname: V. surname: Poornima fullname: Poornima, V. – sequence: 2 givenname: RamyaDevi surname: R. fullname: R., RamyaDevi |
| BookMark | eNp9kMtOQjEQhhuDiYC-gKsmrqttz6U9S4IXTCAaI4m7plcoObTYHha8vQdw5cLNTDKZ75_MNwKDEIMF4Jbge4Ixe8iEUMYQpiUipK45IhdgSCpGES_KrwEY4oY2qKaEXoFRzhuMe6yhQ7CbwNlBJW_gIhrbQhcTfE_WeN35GGB08NFLZTub4TL7sIILqdc-WDi3MoXjYNrKnL3zWp6ISbuKyXfrbYYyGPjRl7jtI-PGniKvwaWTbbY3v30Mls9Pn9MZmr-9vE4nc6QpqzpkCmm4YtxpywhWrmSK1a5RldSFIrJRpnK4MsoUmmFTElZQXTtLm4pyrp0txuDunLtL8Xtvcyc2cZ9Cf1IUtKo5K0tc9lv8vKVTzDlZJ7TvTo90SfpWECyOfsXZr-j9ipNfQXqU_kF3yW9lOvwH_QBceoEr |
| CitedBy_id | crossref_primary_10_3390_su17136091 |
| Cites_doi | 10.1155/2022/1684017 10.1126/science.1087361 10.1007/3-540-44503-X_27 10.1214/15-AOAS848 10.1007/11752790 10.2196/17508 10.31873/IJETR.9.6.2019.64 10.1016/j.procs.2020.01.047 10.1002/rsa.10073 10.1001/jama.2017.16627 10.1016/j.livsci.2015.06.019 10.1016/j.dsp.2006.09.005 10.1016/j.csbj.2021.03.003 10.1145/502512.502546 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11277-024-11668-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Journalism & Communications Engineering |
| EISSN | 1572-834X |
| EndPage | 1449 |
| ExternalDocumentID | 10_1007_s11277_024_11668_1 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FD6 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9P PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c275t-d3ad8b78fce710bf47b76f9b5ac3b1a9bd5f05dbd3c70d41732c6fe295288cfe3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0929-6212 |
| IngestDate | Tue Dec 02 10:00:35 EST 2025 Sat Nov 29 05:18:34 EST 2025 Tue Nov 18 21:55:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c275t-d3ad8b78fce710bf47b76f9b5ac3b1a9bd5f05dbd3c70d41732c6fe295288cfe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256874404 |
| PQPubID | 2043826 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3256874404 crossref_citationtrail_10_1007_s11277_024_11668_1 crossref_primary_10_1007_s11277_024_11668_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Wireless personal communications |
| PublicationYear | 2024 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | L Licitra (11668_CR5) 2017; 318 L Ismail (11668_CR3) 2020 R Jansen (11668_CR22) 2003; 302 11668_CR8 11668_CR9 11668_CR1 11668_CR4 A Mujumdara (11668_CR7) 2019; 165 11668_CR10 B Letham (11668_CR21) 2015; 9 11668_CR20 11668_CR2 11668_CR23 11668_CR14 11668_CR13 11668_CR16 11668_CR15 V Poornima (11668_CR11) 2018; 29 11668_CR18 11668_CR17 S Dasgupta (11668_CR19) 2003; 22 I Leila (11668_CR6) 2020 MR Devi (11668_CR12) 2016; 11 |
| References_xml | – ident: 11668_CR1 – ident: 11668_CR13 doi: 10.1155/2022/1684017 – volume: 302 start-page: 449 year: 2003 ident: 11668_CR22 publication-title: Science doi: 10.1126/science.1087361 – volume: 29 start-page: 2274 issue: 11 year: 2018 ident: 11668_CR11 publication-title: Biomedical Research – ident: 11668_CR16 – ident: 11668_CR17 doi: 10.1007/3-540-44503-X_27 – ident: 11668_CR20 – ident: 11668_CR2 – volume: 165 start-page: 292 issue: 2019 year: 2019 ident: 11668_CR7 publication-title: International Conference on Recent Trends in Advanced Computing – volume: 9 start-page: 1350 year: 2015 ident: 11668_CR21 publication-title: Annals of Applied Statistics doi: 10.1214/15-AOAS848 – ident: 11668_CR18 doi: 10.1007/11752790 – year: 2020 ident: 11668_CR6 publication-title: Journal of Medical Internet Research doi: 10.2196/17508 – ident: 11668_CR4 – ident: 11668_CR9 doi: 10.31873/IJETR.9.6.2019.64 – volume: 11 start-page: 727 issue: 1 year: 2016 ident: 11668_CR12 publication-title: International Journal of Applied Engineering Research – ident: 11668_CR23 doi: 10.1016/j.procs.2020.01.047 – volume: 22 start-page: 60 issue: 1 year: 2003 ident: 11668_CR19 publication-title: Random Structures and Algorithms doi: 10.1002/rsa.10073 – volume: 318 start-page: 2354 year: 2017 ident: 11668_CR5 publication-title: JAMA, The Journal of the American Medical Association doi: 10.1001/jama.2017.16627 – ident: 11668_CR14 – ident: 11668_CR8 doi: 10.1016/j.livsci.2015.06.019 – ident: 11668_CR10 doi: 10.1016/j.dsp.2006.09.005 – year: 2020 ident: 11668_CR3 publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2021.03.003 – ident: 11668_CR15 doi: 10.1145/502512.502546 |
| SSID | ssj0010092 |
| Score | 2.361634 |
| Snippet | The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1437 |
| SubjectTerms | Accuracy Algorithms Cardiovascular disease Chronic illnesses Classification Data mining Diabetes Diagnosis Gene expression Machine learning Neural networks |
| Title | A Hybrid Model for Prediction of Diabetes Using Machine Learning Classification Algorithms and Random Projection |
| URI | https://www.proquest.com/docview/3256874404 |
| Volume | 139 |
| WOSCitedRecordID | wos001380439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-834X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-834X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-834X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-834X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1572-834X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDLYK9AAHKC_xauQD4lKNyOxrdk9VikBIbaMoUIR6WWUeG5DyIhuQ-u9rTybQXLj0Mpf1jlay1_aMP38GOE0SLi1KK3Sm6YBCKYkoKDALaZRRUZ4XxqN8736odju_vy864cKtDrDKhU_0jtqODd-Rn8cUm3PPZvd18iR4ahRXV8MIjRVYY5YE6aF7N69VBCYU8lx7DPEgHx2aZuatc5KLlxShhJRZRiep5cC07Jd9sLna-t_P_ASbIc3E1twutuGDG-3Axj_kgztwHIQe6yGe4VKjSL0LkxZe_-FuLuRpaQOk3BY7U67qsACOKwxYmho96gB_elSmw0DY2kc_bpOBSH5LbA369J2zh2GNvZHFLi3jIW3pL4JIYA9-XV3eXlyLMJ1BmEilM2Hjns21yivjKEvRVaK0yqpCpz0Ta9krtE2rZmq1jY1q2kSqODJZ5aIiJRMwlYv3YXU0HrkDwJxZ38horE6TRKmqsJRlmmakcxdrJ80hyIVqShOoy3mCxqB8I11mdZakztKrs5SH8OX1ncmcuONd6ZOFOsvwE9flmy6P3n98DOuRtyRGuZzA6mz67D7DR_Mye6ynDVj7dtnudBuw8l2JhrdQWjvpb1q7N3d_ARjc7IM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFolyoFCo6AvmAFzQqlm_dn1AKIJWqZJGFSqoN5N9uFTKizgU9U_xG5nZ2C259NYDF188Xlnrb3dmPd98A_AmSTi1KJ0wmaEDCoUkIifHLKRVVkVa5zawfL_1VL-vz8_z0xX409TCMK2y2RPDRu0mlv-RH8Tkm3VQs_s4_Sm4axRnV5sWGgtYdP31bzqyVR-OP9P3fRtFR4dnnzqi7iogbKTSuXDxwGmjdGk9eVdTJsqorMxNOrCxkYPcuLRspc642KqWS6SKI5uVPspTenVb-pjGfQBrSawVr6uuEjdZCxYwCtp-TCkhn1AX6SxK9SQnS8kjCimzjE5uy45w2Q8E53a08b9Ny1N4UofR2F7g_hms-PEmPP5HXHETdmujy2qE73CpEKZ6DtM2dq65Wg25G9wQKXbH0xlnrdgAJyXWXKEKA6sCTwLr1GMtSHuBoZ0oE63CkNgeXtC8zH-MKhyMHX6hy2REQ4YfXWTwAr7ey4Rswep4MvYvATWr2tGicCZNEqXK3FEUbVuR0T42XtptkA0UCltLs3OHkGFxKyrN8CkIPkWATyG34f3NM9OFMMmd1nsNfIp6k6qKW-zs3H37NTzqnJ30it5xv7sL61FAMTN69mB1Pvvl9-GhvZpfVrNXYT0gfL9vpP0FnCpH4g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Model+for+Prediction+of+Diabetes+Using+Machine+Learning+Classification+Algorithms+and+Random+Projection&rft.jtitle=Wireless+personal+communications&rft.au=Poornima%2C+V.&rft.au=R.%2C+RamyaDevi&rft.date=2024-12-01&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=139&rft.issue=3&rft.spage=1437&rft.epage=1449&rft_id=info:doi/10.1007%2Fs11277-024-11668-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11277_024_11668_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon |