A Hybrid Model for Prediction of Diabetes Using Machine Learning Classification Algorithms and Random Projection

The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research predictions and studies aid in preventative care by offering effective interventions and monitoring. One of the diseases that is spreading fastest in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless personal communications Ročník 139; číslo 3; s. 1437 - 1449
Hlavní autoři: Poornima, V., R., RamyaDevi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.12.2024
Témata:
ISSN:0929-6212, 1572-834X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research predictions and studies aid in preventative care by offering effective interventions and monitoring. One of the diseases that is spreading fastest in the world is diabetes, which needs to be monitored constantly. We investigate various machine learning techniques that will aid in the early diagnosis of this disease to verify this. In this study, a reliable diabetes prediction system using Random Projection feature reduction has been developed. the hybrid approach of random projection with machine learning classification algorithms can be used for disease prediction. In the field of medical informatics, high-dimensional data, such as gene expression data or imaging data, is often used to predict diseases or diagnose conditions. The use of random projection in combination with machine learning classification algorithms can help reduce the dimensionality of the data and improve the accuracy of disease prediction. Three steps make up the proposed framework's overall process: (1) Pre-processing (2) Dimensionality reduction using Random Projection (3) Prediction using Hybrid Classifier. For categorization, a number of Machine Learning (ML) methods are employed, including Bayesian Net, Ada Boost, Logit Boost, Decision Table and Hoeffding Tree. This study investigated whether RP is best suited for use with machine learning methods to increase illness prediction accuracy. In this case, the dataset from the repository of UCI is used for testing in order to assess the system's performance and compare it to assessment criteria such as classification accuracy, True Positive ROC Curve, PRC Curve and Precision. The results of this study suggest that the proposed hybrid method is an effective and reliable approach for improving disease prediction accuracy, potentially aiding in earlier diagnosis and better healthcare outcomes.
AbstractList The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research predictions and studies aid in preventative care by offering effective interventions and monitoring. One of the diseases that is spreading fastest in the world is diabetes, which needs to be monitored constantly. We investigate various machine learning techniques that will aid in the early diagnosis of this disease to verify this. In this study, a reliable diabetes prediction system using Random Projection feature reduction has been developed. the hybrid approach of random projection with machine learning classification algorithms can be used for disease prediction. In the field of medical informatics, high-dimensional data, such as gene expression data or imaging data, is often used to predict diseases or diagnose conditions. The use of random projection in combination with machine learning classification algorithms can help reduce the dimensionality of the data and improve the accuracy of disease prediction. Three steps make up the proposed framework's overall process: (1) Pre-processing (2) Dimensionality reduction using Random Projection (3) Prediction using Hybrid Classifier. For categorization, a number of Machine Learning (ML) methods are employed, including Bayesian Net, Ada Boost, Logit Boost, Decision Table and Hoeffding Tree. This study investigated whether RP is best suited for use with machine learning methods to increase illness prediction accuracy. In this case, the dataset from the repository of UCI is used for testing in order to assess the system's performance and compare it to assessment criteria such as classification accuracy, True Positive ROC Curve, PRC Curve and Precision. The results of this study suggest that the proposed hybrid method is an effective and reliable approach for improving disease prediction accuracy, potentially aiding in earlier diagnosis and better healthcare outcomes.
Author Poornima, V.
R., RamyaDevi
Author_xml – sequence: 1
  givenname: V.
  surname: Poornima
  fullname: Poornima, V.
– sequence: 2
  givenname: RamyaDevi
  surname: R.
  fullname: R., RamyaDevi
BookMark eNp9kMtOQjEQhhuDiYC-gKsmrqttz6U9S4IXTCAaI4m7plcoObTYHha8vQdw5cLNTDKZ75_MNwKDEIMF4Jbge4Ixe8iEUMYQpiUipK45IhdgSCpGES_KrwEY4oY2qKaEXoFRzhuMe6yhQ7CbwNlBJW_gIhrbQhcTfE_WeN35GGB08NFLZTub4TL7sIILqdc-WDi3MoXjYNrKnL3zWp6ISbuKyXfrbYYyGPjRl7jtI-PGniKvwaWTbbY3v30Mls9Pn9MZmr-9vE4nc6QpqzpkCmm4YtxpywhWrmSK1a5RldSFIrJRpnK4MsoUmmFTElZQXTtLm4pyrp0txuDunLtL8Xtvcyc2cZ9Cf1IUtKo5K0tc9lv8vKVTzDlZJ7TvTo90SfpWECyOfsXZr-j9ipNfQXqU_kF3yW9lOvwH_QBceoEr
CitedBy_id crossref_primary_10_3390_su17136091
Cites_doi 10.1155/2022/1684017
10.1126/science.1087361
10.1007/3-540-44503-X_27
10.1214/15-AOAS848
10.1007/11752790
10.2196/17508
10.31873/IJETR.9.6.2019.64
10.1016/j.procs.2020.01.047
10.1002/rsa.10073
10.1001/jama.2017.16627
10.1016/j.livsci.2015.06.019
10.1016/j.dsp.2006.09.005
10.1016/j.csbj.2021.03.003
10.1145/502512.502546
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11277-024-11668-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 1449
ExternalDocumentID 10_1007_s11277_024_11668_1
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c275t-d3ad8b78fce710bf47b76f9b5ac3b1a9bd5f05dbd3c70d41732c6fe295288cfe3
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-6212
IngestDate Tue Dec 02 10:00:35 EST 2025
Sat Nov 29 05:18:34 EST 2025
Tue Nov 18 21:55:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-d3ad8b78fce710bf47b76f9b5ac3b1a9bd5f05dbd3c70d41732c6fe295288cfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256874404
PQPubID 2043826
PageCount 13
ParticipantIDs proquest_journals_3256874404
crossref_citationtrail_10_1007_s11277_024_11668_1
crossref_primary_10_1007_s11277_024_11668_1
PublicationCentury 2000
PublicationDate 2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-00
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Wireless personal communications
PublicationYear 2024
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References L Licitra (11668_CR5) 2017; 318
L Ismail (11668_CR3) 2020
R Jansen (11668_CR22) 2003; 302
11668_CR8
11668_CR9
11668_CR1
11668_CR4
A Mujumdara (11668_CR7) 2019; 165
11668_CR10
B Letham (11668_CR21) 2015; 9
11668_CR20
11668_CR2
11668_CR23
11668_CR14
11668_CR13
11668_CR16
11668_CR15
V Poornima (11668_CR11) 2018; 29
11668_CR18
11668_CR17
S Dasgupta (11668_CR19) 2003; 22
I Leila (11668_CR6) 2020
MR Devi (11668_CR12) 2016; 11
References_xml – ident: 11668_CR1
– ident: 11668_CR13
  doi: 10.1155/2022/1684017
– volume: 302
  start-page: 449
  year: 2003
  ident: 11668_CR22
  publication-title: Science
  doi: 10.1126/science.1087361
– volume: 29
  start-page: 2274
  issue: 11
  year: 2018
  ident: 11668_CR11
  publication-title: Biomedical Research
– ident: 11668_CR16
– ident: 11668_CR17
  doi: 10.1007/3-540-44503-X_27
– ident: 11668_CR20
– ident: 11668_CR2
– volume: 165
  start-page: 292
  issue: 2019
  year: 2019
  ident: 11668_CR7
  publication-title: International Conference on Recent Trends in Advanced Computing
– volume: 9
  start-page: 1350
  year: 2015
  ident: 11668_CR21
  publication-title: Annals of Applied Statistics
  doi: 10.1214/15-AOAS848
– ident: 11668_CR18
  doi: 10.1007/11752790
– year: 2020
  ident: 11668_CR6
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/17508
– ident: 11668_CR4
– ident: 11668_CR9
  doi: 10.31873/IJETR.9.6.2019.64
– volume: 11
  start-page: 727
  issue: 1
  year: 2016
  ident: 11668_CR12
  publication-title: International Journal of Applied Engineering Research
– ident: 11668_CR23
  doi: 10.1016/j.procs.2020.01.047
– volume: 22
  start-page: 60
  issue: 1
  year: 2003
  ident: 11668_CR19
  publication-title: Random Structures and Algorithms
  doi: 10.1002/rsa.10073
– volume: 318
  start-page: 2354
  year: 2017
  ident: 11668_CR5
  publication-title: JAMA, The Journal of the American Medical Association
  doi: 10.1001/jama.2017.16627
– ident: 11668_CR14
– ident: 11668_CR8
  doi: 10.1016/j.livsci.2015.06.019
– ident: 11668_CR10
  doi: 10.1016/j.dsp.2006.09.005
– year: 2020
  ident: 11668_CR3
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2021.03.003
– ident: 11668_CR15
  doi: 10.1145/502512.502546
SSID ssj0010092
Score 2.361634
Snippet The medical industry has risen quickly to be particularly interested in the concept of machine learning. Clinical sets of information used in research...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1437
SubjectTerms Accuracy
Algorithms
Cardiovascular disease
Chronic illnesses
Classification
Data mining
Diabetes
Diagnosis
Gene expression
Machine learning
Neural networks
Title A Hybrid Model for Prediction of Diabetes Using Machine Learning Classification Algorithms and Random Projection
URI https://www.proquest.com/docview/3256874404
Volume 139
WOSCitedRecordID wos001380439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDLYK9AAHKC_xauQD4lKNyOxrdk9VikBIbaMoUIR6WWUeG5DyIhuQ-u9rTybQXLj0Mpf1jlay1_aMP38GOE0SLi1KK3Sm6YBCKYkoKDALaZRRUZ4XxqN8736odju_vy864cKtDrDKhU_0jtqODd-Rn8cUm3PPZvd18iR4ahRXV8MIjRVYY5YE6aF7N69VBCYU8lx7DPEgHx2aZuatc5KLlxShhJRZRiep5cC07Jd9sLna-t_P_ASbIc3E1twutuGDG-3Axj_kgztwHIQe6yGe4VKjSL0LkxZe_-FuLuRpaQOk3BY7U67qsACOKwxYmho96gB_elSmw0DY2kc_bpOBSH5LbA369J2zh2GNvZHFLi3jIW3pL4JIYA9-XV3eXlyLMJ1BmEilM2Hjns21yivjKEvRVaK0yqpCpz0Ta9krtE2rZmq1jY1q2kSqODJZ5aIiJRMwlYv3YXU0HrkDwJxZ38horE6TRKmqsJRlmmakcxdrJ80hyIVqShOoy3mCxqB8I11mdZakztKrs5SH8OX1ncmcuONd6ZOFOsvwE9flmy6P3n98DOuRtyRGuZzA6mz67D7DR_Mye6ynDVj7dtnudBuw8l2JhrdQWjvpb1q7N3d_ARjc7IM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFolyoFCo6AvmAFzQqlm_dn1AKIJWqZJGFSqoN5N9uFTKizgU9U_xG5nZ2C259NYDF188Xlnrb3dmPd98A_AmSTi1KJ0wmaEDCoUkIifHLKRVVkVa5zawfL_1VL-vz8_z0xX409TCMK2y2RPDRu0mlv-RH8Tkm3VQs_s4_Sm4axRnV5sWGgtYdP31bzqyVR-OP9P3fRtFR4dnnzqi7iogbKTSuXDxwGmjdGk9eVdTJsqorMxNOrCxkYPcuLRspc642KqWS6SKI5uVPspTenVb-pjGfQBrSawVr6uuEjdZCxYwCtp-TCkhn1AX6SxK9SQnS8kjCimzjE5uy45w2Q8E53a08b9Ny1N4UofR2F7g_hms-PEmPP5HXHETdmujy2qE73CpEKZ6DtM2dq65Wg25G9wQKXbH0xlnrdgAJyXWXKEKA6sCTwLr1GMtSHuBoZ0oE63CkNgeXtC8zH-MKhyMHX6hy2REQ4YfXWTwAr7ey4Rswep4MvYvATWr2tGicCZNEqXK3FEUbVuR0T42XtptkA0UCltLs3OHkGFxKyrN8CkIPkWATyG34f3NM9OFMMmd1nsNfIp6k6qKW-zs3H37NTzqnJ30it5xv7sL61FAMTN69mB1Pvvl9-GhvZpfVrNXYT0gfL9vpP0FnCpH4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Model+for+Prediction+of+Diabetes+Using+Machine+Learning+Classification+Algorithms+and+Random+Projection&rft.jtitle=Wireless+personal+communications&rft.au=Poornima%2C+V.&rft.au=R.%2C+RamyaDevi&rft.date=2024-12-01&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=139&rft.issue=3&rft.spage=1437&rft.epage=1449&rft_id=info:doi/10.1007%2Fs11277-024-11668-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11277_024_11668_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon