FCAN-MOPSO: An Improved Fuzzy-Based Graph Clustering Algorithm for Complex Networks With Multiobjective Particle Swarm Optimization
Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering algorithms have, thus, been proposed to do so by taking into account network topology and node attributes. Among them, fuzzy clustering algorit...
Uložené v:
| Vydané v: | IEEE transactions on fuzzy systems Ročník 31; číslo 10; s. 3470 - 3484 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.10.2023
|
| Predmet: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering algorithms have, thus, been proposed to do so by taking into account network topology and node attributes. Among them, fuzzy clustering algorithm for complex networks (FCAN) is an established fuzzy clustering algorithm that optimizes the memberships of nodes based on dense structures and content relevance. This article proposes an improved fuzzy-based graph clustering algorithm, namely FCAN-multi objective particle swarm optimization (MOPSO) that retains all the benefits associated with FCAN while achieving significantly increased convergence rate using multiobjective particle swarm optimization (MOPSO). To do so, FCAN-MOPSO first modifies the original optimization model of FCAN by adopting an instance-frequency-weighted regularization, which enhances the ability of FCAN-MOPSO to handle the imbalance observed in the distribution of fuzzy memberships of nodes. After that, FCAN-MOPSO decomposes its optimization problem into a set of suboptimization problems. Following the MOPSO framework, FCAN-MOPSO develops an effective solution to reach a consensus optimization among them by balancing the global exploration and local exploitation abilities of particles. A theoretical analysis is provided to prove the global convergence of FCAN-MOPSO. Extensive experiments have been conducted to evaluate the performance of FCAN-MOPSO on five real-world complex networks with different scale, and experimental results demonstrate that when compared with state-of-the-art clustering algorithms, FCAN-MOPSO achieves a better accuracy performance with improved convergence. Hence, FCAN-MOPSO is a promising graph clustering algorithm to precisely and efficiently discover clusters in complex networks. |
|---|---|
| AbstractList | Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering algorithms have, thus, been proposed to do so by taking into account network topology and node attributes. Among them, fuzzy clustering algorithm for complex networks (FCAN) is an established fuzzy clustering algorithm that optimizes the memberships of nodes based on dense structures and content relevance. This article proposes an improved fuzzy-based graph clustering algorithm, namely FCAN-multi objective particle swarm optimization (MOPSO) that retains all the benefits associated with FCAN while achieving significantly increased convergence rate using multiobjective particle swarm optimization (MOPSO). To do so, FCAN-MOPSO first modifies the original optimization model of FCAN by adopting an instance-frequency-weighted regularization, which enhances the ability of FCAN-MOPSO to handle the imbalance observed in the distribution of fuzzy memberships of nodes. After that, FCAN-MOPSO decomposes its optimization problem into a set of suboptimization problems. Following the MOPSO framework, FCAN-MOPSO develops an effective solution to reach a consensus optimization among them by balancing the global exploration and local exploitation abilities of particles. A theoretical analysis is provided to prove the global convergence of FCAN-MOPSO. Extensive experiments have been conducted to evaluate the performance of FCAN-MOPSO on five real-world complex networks with different scale, and experimental results demonstrate that when compared with state-of-the-art clustering algorithms, FCAN-MOPSO achieves a better accuracy performance with improved convergence. Hence, FCAN-MOPSO is a promising graph clustering algorithm to precisely and efficiently discover clusters in complex networks. |
| Author | Tang, Zehai Luo, Xin Yang, Yue Hu, Lun He, Yizhou |
| Author_xml | – sequence: 1 givenname: Lun orcidid: 0000-0002-1591-8549 surname: Hu fullname: Hu, Lun organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China – sequence: 2 givenname: Yue surname: Yang fullname: Yang, Yue organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Zehai surname: Tang fullname: Tang, Zehai organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China – sequence: 4 givenname: Yizhou orcidid: 0000-0003-1455-7136 surname: He fullname: He, Yizhou organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China – sequence: 5 givenname: Xin orcidid: 0000-0002-1348-5305 surname: Luo fullname: Luo, Xin organization: College of Computer and Information Science, Southwest University, Chongqing, China |
| BookMark | eNp9kDtPwzAUhS0EElD4A0yWmFP8iJOUrUS0VAKKBAipS3TjuOCSxMF2eHTlj-MCEwPTPdL9zn2cfbTdmlYhdETJkFIyOrmb3C8WQ0YYH3ImRilLttAeHcU0IoTH20GThEdJSpJdtO_cihAaC5rtoc9JPr6OruY3t_NTPG7xrOmseVUVnvTr9Ud0Bi7oqYXuCed177yyun3E4_rRWO2fGrw0Fuem6Wr1jq-VfzP22eGH0MJXfe21KVdKev2q8A1Yr2Wt8O0b2AbPO68bvYaAtAdoZwm1U4e_dYDuJ-d3-UV0OZ_O8vFlJFkqfFTRRKQAFRVAVVmxMmWMUpYmGZeQgOQgOJUlExkoBrFkVRIHdgQ0KwksCR-g45-54cWXXjlfrExv27CyYFnKRZYJQgOV_VDSGuesWhZS--87vQVdF5QUm8iL78iLTeTFb-TByv5YO6sbsB__mb4AF_2H0w |
| CitedBy_id | crossref_primary_10_1016_j_ins_2024_121209 crossref_primary_10_1145_3664618 crossref_primary_10_3390_drones9080568 crossref_primary_10_1007_s10489_023_05105_2 crossref_primary_10_3389_fmicb_2024_1354989 crossref_primary_10_1186_s40807_025_00175_x crossref_primary_10_1186_s12859_023_05496_6 crossref_primary_10_1016_j_cja_2025_103752 crossref_primary_10_1109_TFUZZ_2023_3338565 crossref_primary_10_1186_s12859_023_05572_x crossref_primary_10_1016_j_eswa_2024_126165 crossref_primary_10_1109_JAS_2024_125016 crossref_primary_10_3390_math12020295 crossref_primary_10_1186_s12859_023_05425_7 crossref_primary_10_1016_j_apenergy_2025_125868 crossref_primary_10_1109_TFUZZ_2024_3443207 crossref_primary_10_1016_j_neucom_2024_127349 crossref_primary_10_1007_s10489_025_06347_y crossref_primary_10_1186_s12859_023_05542_3 crossref_primary_10_1007_s00500_023_09364_6 crossref_primary_10_1051_sbuild_2024005 crossref_primary_10_3389_fmicb_2023_1283276 crossref_primary_10_1109_JAS_2023_123741 crossref_primary_10_3390_computation11100188 crossref_primary_10_1093_bib_bbae067 crossref_primary_10_3390_math11183990 crossref_primary_10_1016_j_ymeth_2023_10_014 crossref_primary_10_3390_pr12010232 crossref_primary_10_1051_e3sconf_202346900019 crossref_primary_10_1186_s12859_023_05593_6 crossref_primary_10_3390_app15169176 crossref_primary_10_1007_s00339_024_07871_3 crossref_primary_10_1186_s12859_024_05763_0 crossref_primary_10_1016_j_procs_2024_10_148 crossref_primary_10_1186_s12859_023_05534_3 crossref_primary_10_1186_s12911_024_02497_0 crossref_primary_10_1186_s12859_023_05574_9 crossref_primary_10_1007_s10489_024_05638_0 crossref_primary_10_1016_j_physa_2025_130778 crossref_primary_10_1109_TSMC_2025_3578348 crossref_primary_10_3390_act14020049 crossref_primary_10_1186_s12911_024_02484_5 crossref_primary_10_1007_s10660_025_10020_4 crossref_primary_10_1088_1361_6501_adf133 crossref_primary_10_1186_s12859_024_05754_1 crossref_primary_10_1186_s12859_024_05772_z crossref_primary_10_1186_s12911_024_02469_4 crossref_primary_10_1016_j_cma_2024_117429 crossref_primary_10_1109_JAS_2023_123687 |
| Cites_doi | 10.1109/TFUZZ.2018.2791951 10.1109/TFUZZ.2015.2460732 10.1109/ICDM.2010.41 10.14778/1687627.1687709 10.3390/su11072007 10.1109/CEC.2002.1004388 10.1007/978-3-540-68020-8 10.1109/TNSE.2020.3040407 10.1109/ACCESS.2018.2843726 10.1145/2488388.2488483 10.1162/EVCO_a_00104 10.1017/nws.2015.9 10.1016/j.ijpe.2010.11.022 10.1093/bioinformatics/btaa775 10.1145/2629616 10.1073/pnas.0601602103 10.3233/ICA-200645 10.1109/TCYB.2016.2521376 10.1109/TKDE.2016.2618795 10.1016/j.ejor.2017.03.048 10.14778/2140436.2140443 10.1109/TFUZZ.2019.2945232 10.1109/TEVC.2004.826067 10.1109/SNAMS.2019.8931852 10.1007/s11222-007-9033-z 10.1093/comnet/cnt016 10.1109/TKDE.2018.2819980 10.1007/s41109-019-0111-x 10.1080/15427951.2004.10129093 10.1109/TCYB.2017.2693558 10.1109/TCYB.2017.2692385 10.1109/ICDM.2013.167 10.24963/ijcai.2020/411 10.1016/j.ins.2007.06.018 10.1145/3308558.3313715 10.1016/j.ejor.2020.03.035 10.1016/j.cam.2014.11.056 10.1109/TSMC.2019.2930525 10.1109/TNNLS.2020.3041360 10.1016/j.ejor.2015.06.071 10.1016/j.ins.2020.05.044 10.1016/j.cosrev.2007.05.001 10.1109/TCBB.2018.2844256 10.1109/CEC.2000.870279 10.1109/TKDE.2007.190689 10.1007/978-3-642-03367-4_30 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2023.3259726 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 3484 |
| ExternalDocumentID | 10_1109_TFUZZ_2023_3259726 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH AAYXX ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c275t-d1657aad15a1ebd2b7221127683ca6ac3a531cb258ae2a4c2d6415a9a18b0af03 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087772600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sun Nov 30 04:22:32 EST 2025 Sat Nov 29 03:12:44 EST 2025 Tue Nov 18 21:34:59 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c275t-d1657aad15a1ebd2b7221127683ca6ac3a531cb258ae2a4c2d6415a9a18b0af03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1591-8549 0000-0003-1455-7136 0000-0002-1348-5305 |
| PQID | 2873588501 |
| PQPubID | 85428 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2873588501 crossref_citationtrail_10_1109_TFUZZ_2023_3259726 crossref_primary_10_1109_TFUZZ_2023_3259726 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationYear | 2023 |
| Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 ref17 ref16 ref19 ref18 jin (ref14) 2023; 35 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ruochen (ref45) 2017; 261 ref49 ref8 ref7 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 dongen (ref22) 2000 ref32 shi (ref20) 0; 1 ref2 ref1 ref39 bianchi (ref38) 0 ref24 ref23 ref26 ref25 ref21 hu (ref6) 2021; 14 ref28 ref27 ref29 |
| References_xml | – ident: ref32 doi: 10.1109/TFUZZ.2018.2791951 – start-page: 874 year: 0 ident: ref38 article-title: Spectral clustering with graph neural networks for graph pooling publication-title: Proc Int Conf Mach Learn – ident: ref15 doi: 10.1109/TFUZZ.2015.2460732 – ident: ref28 doi: 10.1109/ICDM.2010.41 – ident: ref27 doi: 10.14778/1687627.1687709 – ident: ref50 doi: 10.3390/su11072007 – ident: ref18 doi: 10.1109/CEC.2002.1004388 – ident: ref5 doi: 10.1007/978-3-540-68020-8 – ident: ref12 doi: 10.1109/TNSE.2020.3040407 – ident: ref2 doi: 10.1109/ACCESS.2018.2843726 – ident: ref30 doi: 10.1145/2488388.2488483 – ident: ref42 doi: 10.1162/EVCO_a_00104 – ident: ref11 doi: 10.1017/nws.2015.9 – ident: ref49 doi: 10.1016/j.ijpe.2010.11.022 – ident: ref4 doi: 10.1093/bioinformatics/btaa775 – ident: ref34 doi: 10.1145/2629616 – ident: ref23 doi: 10.1073/pnas.0601602103 – ident: ref8 doi: 10.3233/ICA-200645 – volume: 1 start-page: 81 year: 0 ident: ref20 article-title: Particle swarm optimization: Developments, applications and resources publication-title: Proc Congr Evol Comput – ident: ref35 doi: 10.1109/TCYB.2016.2521376 – ident: ref10 doi: 10.1109/TKDE.2016.2618795 – volume: 261 start-page: 1028 year: 2017 ident: ref45 article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.03.048 – ident: ref29 doi: 10.14778/2140436.2140443 – ident: ref16 doi: 10.1109/TFUZZ.2019.2945232 – volume: 35 start-page: 1149 year: 2023 ident: ref14 article-title: A survey of community detection approaches: From statistical modeling to deep learning publication-title: IEEE Trans Knowl Data Eng – ident: ref40 doi: 10.1109/TEVC.2004.826067 – ident: ref48 doi: 10.1109/SNAMS.2019.8931852 – ident: ref21 doi: 10.1007/s11222-007-9033-z – ident: ref51 doi: 10.1093/comnet/cnt016 – ident: ref7 doi: 10.1109/TKDE.2018.2819980 – ident: ref1 doi: 10.1007/s41109-019-0111-x – volume: 14 start-page: 1 year: 2021 ident: ref6 article-title: Automatic detection of melanins and sebums from skin images using a generative adversarial network publication-title: Cogn Comput – ident: ref25 doi: 10.1080/15427951.2004.10129093 – ident: ref31 doi: 10.1109/TCYB.2017.2693558 – ident: ref46 doi: 10.1109/TCYB.2017.2692385 – ident: ref33 doi: 10.1109/ICDM.2013.167 – ident: ref39 doi: 10.24963/ijcai.2020/411 – year: 2000 ident: ref22 article-title: Graph clustering by flow simulation – ident: ref41 doi: 10.1016/j.ins.2007.06.018 – ident: ref37 doi: 10.1145/3308558.3313715 – ident: ref47 doi: 10.1016/j.ejor.2020.03.035 – ident: ref44 doi: 10.1016/j.cam.2014.11.056 – ident: ref17 doi: 10.1109/TSMC.2019.2930525 – ident: ref13 doi: 10.1109/TNNLS.2020.3041360 – ident: ref43 doi: 10.1016/j.ejor.2015.06.071 – ident: ref36 doi: 10.1016/j.ins.2020.05.044 – ident: ref9 doi: 10.1016/j.cosrev.2007.05.001 – ident: ref3 doi: 10.1109/TCBB.2018.2844256 – ident: ref19 doi: 10.1109/CEC.2000.870279 – ident: ref24 doi: 10.1109/TKDE.2007.190689 – ident: ref26 doi: 10.1007/978-3-642-03367-4_30 |
| SSID | ssj0014518 |
| Score | 2.6563885 |
| Snippet | Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 3470 |
| SubjectTerms | Algorithms Cluster analysis Clustering Convergence Multiple objective analysis Network topologies Nodes Optimization Optimization models Particle swarm optimization Performance evaluation Regularization |
| Title | FCAN-MOPSO: An Improved Fuzzy-Based Graph Clustering Algorithm for Complex Networks With Multiobjective Particle Swarm Optimization |
| URI | https://www.proquest.com/docview/2873588501 |
| Volume | 31 |
| WOSCitedRecordID | wos001087772600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4AAHPgaIwUA-cKsyYieOY26louIA7aR1aOslcj66FrVp1TZj9Mpfx3_Fs2MnKQzEDlyiykpdp--X92W_30Po9dhnVG0AORysiwNaksE75zInoQFNUw42UNM1ff7I-_3w7Ewct1o_bC3M5YzneXh1JZb_VdQwBsJWpbM3EHc1KQzAZxA6XEHscP0nwfe6nb7zaXB8MrBJP503AMeyV2y335x3YLdUEkouJ-3urFBECTo1MrtYrKabyVwfPFRqYpZdqXpgdXJLnZLdTNq6WncRfymVJHif5a-3T77K1bw9AO0zN2WdTZ9XxZOqFYXtS643KMZqLYZHel1jS6cJigqw5yabfV5U-BuaoVE2kdM6k6vvmm4ni6KZx6D1iTiresFZcgLuGmLsckz4xFEUOk197ZEmLt2G9vX8sgmJseReSZN6jZXQJKvD3ulodKSWcuRBEMjpNZTcv5jK6gCjDp1cEek5IjVHZOa4hW5TzkRYlhJWG1o-I2VVpnlIW7_lije_r2PXR9p1EbTfM3yI7puABXdKUT9CrSzfRw9sMxBsbMM-utdgtnyMvtcofIs7ObYYxA0MYo1BXGMQVxjEgEFsMIgtBrHCIN7FILYYxBqDuInBJ-i0937Y_eCYfh-gGTjbOCkJGJcyJUySLE5pzCmFcAACYi-RgUw8CQYjiSkLZUaln9A0APdTCknC2JVj13uK9vJFnj1DeOyniYhFEgZh6hOeCZEQ3x9L4UvQWllwgIj9h6PEkOGrniyz6M-SPUDt6jvLkgrmr3cfWsFFRjusIxpyj4Uhc8nzG032At2tX5lDtLdZFdlLdCe53EzXq1caaT8B5lS0qQ |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCAN-MOPSO%3A+An+Improved+Fuzzy-Based+Graph+Clustering+Algorithm+for+Complex+Networks+With+Multiobjective+Particle+Swarm+Optimization&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Hu%2C+Lun&rft.au=Yang%2C+Yue&rft.au=Tang%2C+Zehai&rft.au=He%2C+Yizhou&rft.date=2023-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=31&rft.issue=10&rft.spage=3470&rft.epage=3484&rft_id=info:doi/10.1109%2FTFUZZ.2023.3259726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2023_3259726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |