FCAN-MOPSO: An Improved Fuzzy-Based Graph Clustering Algorithm for Complex Networks With Multiobjective Particle Swarm Optimization

Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering algorithms have, thus, been proposed to do so by taking into account network topology and node attributes. Among them, fuzzy clustering algorit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on fuzzy systems Ročník 31; číslo 10; s. 3470 - 3484
Hlavní autori: Hu, Lun, Yang, Yue, Tang, Zehai, He, Yizhou, Luo, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.10.2023
Predmet:
ISSN:1063-6706, 1941-0034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering algorithms have, thus, been proposed to do so by taking into account network topology and node attributes. Among them, fuzzy clustering algorithm for complex networks (FCAN) is an established fuzzy clustering algorithm that optimizes the memberships of nodes based on dense structures and content relevance. This article proposes an improved fuzzy-based graph clustering algorithm, namely FCAN-multi objective particle swarm optimization (MOPSO) that retains all the benefits associated with FCAN while achieving significantly increased convergence rate using multiobjective particle swarm optimization (MOPSO). To do so, FCAN-MOPSO first modifies the original optimization model of FCAN by adopting an instance-frequency-weighted regularization, which enhances the ability of FCAN-MOPSO to handle the imbalance observed in the distribution of fuzzy memberships of nodes. After that, FCAN-MOPSO decomposes its optimization problem into a set of suboptimization problems. Following the MOPSO framework, FCAN-MOPSO develops an effective solution to reach a consensus optimization among them by balancing the global exploration and local exploitation abilities of particles. A theoretical analysis is provided to prove the global convergence of FCAN-MOPSO. Extensive experiments have been conducted to evaluate the performance of FCAN-MOPSO on five real-world complex networks with different scale, and experimental results demonstrate that when compared with state-of-the-art clustering algorithms, FCAN-MOPSO achieves a better accuracy performance with improved convergence. Hence, FCAN-MOPSO is a promising graph clustering algorithm to precisely and efficiently discover clusters in complex networks.
AbstractList Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering algorithms have, thus, been proposed to do so by taking into account network topology and node attributes. Among them, fuzzy clustering algorithm for complex networks (FCAN) is an established fuzzy clustering algorithm that optimizes the memberships of nodes based on dense structures and content relevance. This article proposes an improved fuzzy-based graph clustering algorithm, namely FCAN-multi objective particle swarm optimization (MOPSO) that retains all the benefits associated with FCAN while achieving significantly increased convergence rate using multiobjective particle swarm optimization (MOPSO). To do so, FCAN-MOPSO first modifies the original optimization model of FCAN by adopting an instance-frequency-weighted regularization, which enhances the ability of FCAN-MOPSO to handle the imbalance observed in the distribution of fuzzy memberships of nodes. After that, FCAN-MOPSO decomposes its optimization problem into a set of suboptimization problems. Following the MOPSO framework, FCAN-MOPSO develops an effective solution to reach a consensus optimization among them by balancing the global exploration and local exploitation abilities of particles. A theoretical analysis is provided to prove the global convergence of FCAN-MOPSO. Extensive experiments have been conducted to evaluate the performance of FCAN-MOPSO on five real-world complex networks with different scale, and experimental results demonstrate that when compared with state-of-the-art clustering algorithms, FCAN-MOPSO achieves a better accuracy performance with improved convergence. Hence, FCAN-MOPSO is a promising graph clustering algorithm to precisely and efficiently discover clusters in complex networks.
Author Tang, Zehai
Luo, Xin
Yang, Yue
Hu, Lun
He, Yizhou
Author_xml – sequence: 1
  givenname: Lun
  orcidid: 0000-0002-1591-8549
  surname: Hu
  fullname: Hu, Lun
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
– sequence: 2
  givenname: Yue
  surname: Yang
  fullname: Yang, Yue
  organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Zehai
  surname: Tang
  fullname: Tang, Zehai
  organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
– sequence: 4
  givenname: Yizhou
  orcidid: 0000-0003-1455-7136
  surname: He
  fullname: He, Yizhou
  organization: School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-1348-5305
  surname: Luo
  fullname: Luo, Xin
  organization: College of Computer and Information Science, Southwest University, Chongqing, China
BookMark eNp9kDtPwzAUhS0EElD4A0yWmFP8iJOUrUS0VAKKBAipS3TjuOCSxMF2eHTlj-MCEwPTPdL9zn2cfbTdmlYhdETJkFIyOrmb3C8WQ0YYH3ImRilLttAeHcU0IoTH20GThEdJSpJdtO_cihAaC5rtoc9JPr6OruY3t_NTPG7xrOmseVUVnvTr9Ud0Bi7oqYXuCed177yyun3E4_rRWO2fGrw0Fuem6Wr1jq-VfzP22eGH0MJXfe21KVdKev2q8A1Yr2Wt8O0b2AbPO68bvYaAtAdoZwm1U4e_dYDuJ-d3-UV0OZ_O8vFlJFkqfFTRRKQAFRVAVVmxMmWMUpYmGZeQgOQgOJUlExkoBrFkVRIHdgQ0KwksCR-g45-54cWXXjlfrExv27CyYFnKRZYJQgOV_VDSGuesWhZS--87vQVdF5QUm8iL78iLTeTFb-TByv5YO6sbsB__mb4AF_2H0w
CitedBy_id crossref_primary_10_1016_j_ins_2024_121209
crossref_primary_10_1145_3664618
crossref_primary_10_3390_drones9080568
crossref_primary_10_1007_s10489_023_05105_2
crossref_primary_10_3389_fmicb_2024_1354989
crossref_primary_10_1186_s40807_025_00175_x
crossref_primary_10_1186_s12859_023_05496_6
crossref_primary_10_1016_j_cja_2025_103752
crossref_primary_10_1109_TFUZZ_2023_3338565
crossref_primary_10_1186_s12859_023_05572_x
crossref_primary_10_1016_j_eswa_2024_126165
crossref_primary_10_1109_JAS_2024_125016
crossref_primary_10_3390_math12020295
crossref_primary_10_1186_s12859_023_05425_7
crossref_primary_10_1016_j_apenergy_2025_125868
crossref_primary_10_1109_TFUZZ_2024_3443207
crossref_primary_10_1016_j_neucom_2024_127349
crossref_primary_10_1007_s10489_025_06347_y
crossref_primary_10_1186_s12859_023_05542_3
crossref_primary_10_1007_s00500_023_09364_6
crossref_primary_10_1051_sbuild_2024005
crossref_primary_10_3389_fmicb_2023_1283276
crossref_primary_10_1109_JAS_2023_123741
crossref_primary_10_3390_computation11100188
crossref_primary_10_1093_bib_bbae067
crossref_primary_10_3390_math11183990
crossref_primary_10_1016_j_ymeth_2023_10_014
crossref_primary_10_3390_pr12010232
crossref_primary_10_1051_e3sconf_202346900019
crossref_primary_10_1186_s12859_023_05593_6
crossref_primary_10_3390_app15169176
crossref_primary_10_1007_s00339_024_07871_3
crossref_primary_10_1186_s12859_024_05763_0
crossref_primary_10_1016_j_procs_2024_10_148
crossref_primary_10_1186_s12859_023_05534_3
crossref_primary_10_1186_s12911_024_02497_0
crossref_primary_10_1186_s12859_023_05574_9
crossref_primary_10_1007_s10489_024_05638_0
crossref_primary_10_1016_j_physa_2025_130778
crossref_primary_10_1109_TSMC_2025_3578348
crossref_primary_10_3390_act14020049
crossref_primary_10_1186_s12911_024_02484_5
crossref_primary_10_1007_s10660_025_10020_4
crossref_primary_10_1088_1361_6501_adf133
crossref_primary_10_1186_s12859_024_05754_1
crossref_primary_10_1186_s12859_024_05772_z
crossref_primary_10_1186_s12911_024_02469_4
crossref_primary_10_1016_j_cma_2024_117429
crossref_primary_10_1109_JAS_2023_123687
Cites_doi 10.1109/TFUZZ.2018.2791951
10.1109/TFUZZ.2015.2460732
10.1109/ICDM.2010.41
10.14778/1687627.1687709
10.3390/su11072007
10.1109/CEC.2002.1004388
10.1007/978-3-540-68020-8
10.1109/TNSE.2020.3040407
10.1109/ACCESS.2018.2843726
10.1145/2488388.2488483
10.1162/EVCO_a_00104
10.1017/nws.2015.9
10.1016/j.ijpe.2010.11.022
10.1093/bioinformatics/btaa775
10.1145/2629616
10.1073/pnas.0601602103
10.3233/ICA-200645
10.1109/TCYB.2016.2521376
10.1109/TKDE.2016.2618795
10.1016/j.ejor.2017.03.048
10.14778/2140436.2140443
10.1109/TFUZZ.2019.2945232
10.1109/TEVC.2004.826067
10.1109/SNAMS.2019.8931852
10.1007/s11222-007-9033-z
10.1093/comnet/cnt016
10.1109/TKDE.2018.2819980
10.1007/s41109-019-0111-x
10.1080/15427951.2004.10129093
10.1109/TCYB.2017.2693558
10.1109/TCYB.2017.2692385
10.1109/ICDM.2013.167
10.24963/ijcai.2020/411
10.1016/j.ins.2007.06.018
10.1145/3308558.3313715
10.1016/j.ejor.2020.03.035
10.1016/j.cam.2014.11.056
10.1109/TSMC.2019.2930525
10.1109/TNNLS.2020.3041360
10.1016/j.ejor.2015.06.071
10.1016/j.ins.2020.05.044
10.1016/j.cosrev.2007.05.001
10.1109/TCBB.2018.2844256
10.1109/CEC.2000.870279
10.1109/TKDE.2007.190689
10.1007/978-3-642-03367-4_30
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2023.3259726
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 3484
ExternalDocumentID 10_1109_TFUZZ_2023_3259726
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c275t-d1657aad15a1ebd2b7221127683ca6ac3a531cb258ae2a4c2d6415a9a18b0af03
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087772600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sun Nov 30 04:22:32 EST 2025
Sat Nov 29 03:12:44 EST 2025
Tue Nov 18 21:34:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-d1657aad15a1ebd2b7221127683ca6ac3a531cb258ae2a4c2d6415a9a18b0af03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1591-8549
0000-0003-1455-7136
0000-0002-1348-5305
PQID 2873588501
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_2873588501
crossref_citationtrail_10_1109_TFUZZ_2023_3259726
crossref_primary_10_1109_TFUZZ_2023_3259726
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref17
ref16
ref19
ref18
jin (ref14) 2023; 35
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ruochen (ref45) 2017; 261
ref49
ref8
ref7
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
dongen (ref22) 2000
ref32
shi (ref20) 0; 1
ref2
ref1
ref39
bianchi (ref38) 0
ref24
ref23
ref26
ref25
ref21
hu (ref6) 2021; 14
ref28
ref27
ref29
References_xml – ident: ref32
  doi: 10.1109/TFUZZ.2018.2791951
– start-page: 874
  year: 0
  ident: ref38
  article-title: Spectral clustering with graph neural networks for graph pooling
  publication-title: Proc Int Conf Mach Learn
– ident: ref15
  doi: 10.1109/TFUZZ.2015.2460732
– ident: ref28
  doi: 10.1109/ICDM.2010.41
– ident: ref27
  doi: 10.14778/1687627.1687709
– ident: ref50
  doi: 10.3390/su11072007
– ident: ref18
  doi: 10.1109/CEC.2002.1004388
– ident: ref5
  doi: 10.1007/978-3-540-68020-8
– ident: ref12
  doi: 10.1109/TNSE.2020.3040407
– ident: ref2
  doi: 10.1109/ACCESS.2018.2843726
– ident: ref30
  doi: 10.1145/2488388.2488483
– ident: ref42
  doi: 10.1162/EVCO_a_00104
– ident: ref11
  doi: 10.1017/nws.2015.9
– ident: ref49
  doi: 10.1016/j.ijpe.2010.11.022
– ident: ref4
  doi: 10.1093/bioinformatics/btaa775
– ident: ref34
  doi: 10.1145/2629616
– ident: ref23
  doi: 10.1073/pnas.0601602103
– ident: ref8
  doi: 10.3233/ICA-200645
– volume: 1
  start-page: 81
  year: 0
  ident: ref20
  article-title: Particle swarm optimization: Developments, applications and resources
  publication-title: Proc Congr Evol Comput
– ident: ref35
  doi: 10.1109/TCYB.2016.2521376
– ident: ref10
  doi: 10.1109/TKDE.2016.2618795
– volume: 261
  start-page: 1028
  year: 2017
  ident: ref45
  article-title: A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.03.048
– ident: ref29
  doi: 10.14778/2140436.2140443
– ident: ref16
  doi: 10.1109/TFUZZ.2019.2945232
– volume: 35
  start-page: 1149
  year: 2023
  ident: ref14
  article-title: A survey of community detection approaches: From statistical modeling to deep learning
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref40
  doi: 10.1109/TEVC.2004.826067
– ident: ref48
  doi: 10.1109/SNAMS.2019.8931852
– ident: ref21
  doi: 10.1007/s11222-007-9033-z
– ident: ref51
  doi: 10.1093/comnet/cnt016
– ident: ref7
  doi: 10.1109/TKDE.2018.2819980
– ident: ref1
  doi: 10.1007/s41109-019-0111-x
– volume: 14
  start-page: 1
  year: 2021
  ident: ref6
  article-title: Automatic detection of melanins and sebums from skin images using a generative adversarial network
  publication-title: Cogn Comput
– ident: ref25
  doi: 10.1080/15427951.2004.10129093
– ident: ref31
  doi: 10.1109/TCYB.2017.2693558
– ident: ref46
  doi: 10.1109/TCYB.2017.2692385
– ident: ref33
  doi: 10.1109/ICDM.2013.167
– ident: ref39
  doi: 10.24963/ijcai.2020/411
– year: 2000
  ident: ref22
  article-title: Graph clustering by flow simulation
– ident: ref41
  doi: 10.1016/j.ins.2007.06.018
– ident: ref37
  doi: 10.1145/3308558.3313715
– ident: ref47
  doi: 10.1016/j.ejor.2020.03.035
– ident: ref44
  doi: 10.1016/j.cam.2014.11.056
– ident: ref17
  doi: 10.1109/TSMC.2019.2930525
– ident: ref13
  doi: 10.1109/TNNLS.2020.3041360
– ident: ref43
  doi: 10.1016/j.ejor.2015.06.071
– ident: ref36
  doi: 10.1016/j.ins.2020.05.044
– ident: ref9
  doi: 10.1016/j.cosrev.2007.05.001
– ident: ref3
  doi: 10.1109/TCBB.2018.2844256
– ident: ref19
  doi: 10.1109/CEC.2000.870279
– ident: ref24
  doi: 10.1109/TKDE.2007.190689
– ident: ref26
  doi: 10.1007/978-3-642-03367-4_30
SSID ssj0014518
Score 2.6563885
Snippet Performing an accurate clustering analysis is of great significance for us to understand the behavior of complex networks, and a variety of graph clustering...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3470
SubjectTerms Algorithms
Cluster analysis
Clustering
Convergence
Multiple objective analysis
Network topologies
Nodes
Optimization
Optimization models
Particle swarm optimization
Performance evaluation
Regularization
Title FCAN-MOPSO: An Improved Fuzzy-Based Graph Clustering Algorithm for Complex Networks With Multiobjective Particle Swarm Optimization
URI https://www.proquest.com/docview/2873588501
Volume 31
WOSCitedRecordID wos001087772600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4AAHPgaIwUA-cKsyYieOY26louIA7aR1aOslcj66FrVp1TZj9Mpfx3_Fs2MnKQzEDlyiykpdp--X92W_30Po9dhnVG0AORysiwNaksE75zInoQFNUw42UNM1ff7I-_3w7Ewct1o_bC3M5YzneXh1JZb_VdQwBsJWpbM3EHc1KQzAZxA6XEHscP0nwfe6nb7zaXB8MrBJP503AMeyV2y335x3YLdUEkouJ-3urFBECTo1MrtYrKabyVwfPFRqYpZdqXpgdXJLnZLdTNq6WncRfymVJHif5a-3T77K1bw9AO0zN2WdTZ9XxZOqFYXtS643KMZqLYZHel1jS6cJigqw5yabfV5U-BuaoVE2kdM6k6vvmm4ni6KZx6D1iTiresFZcgLuGmLsckz4xFEUOk197ZEmLt2G9vX8sgmJseReSZN6jZXQJKvD3ulodKSWcuRBEMjpNZTcv5jK6gCjDp1cEek5IjVHZOa4hW5TzkRYlhJWG1o-I2VVpnlIW7_lije_r2PXR9p1EbTfM3yI7puABXdKUT9CrSzfRw9sMxBsbMM-utdgtnyMvtcofIs7ObYYxA0MYo1BXGMQVxjEgEFsMIgtBrHCIN7FILYYxBqDuInBJ-i0937Y_eCYfh-gGTjbOCkJGJcyJUySLE5pzCmFcAACYi-RgUw8CQYjiSkLZUaln9A0APdTCknC2JVj13uK9vJFnj1DeOyniYhFEgZh6hOeCZEQ3x9L4UvQWllwgIj9h6PEkOGrniyz6M-SPUDt6jvLkgrmr3cfWsFFRjusIxpyj4Uhc8nzG032At2tX5lDtLdZFdlLdCe53EzXq1caaT8B5lS0qQ
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCAN-MOPSO%3A+An+Improved+Fuzzy-Based+Graph+Clustering+Algorithm+for+Complex+Networks+With+Multiobjective+Particle+Swarm+Optimization&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Hu%2C+Lun&rft.au=Yang%2C+Yue&rft.au=Tang%2C+Zehai&rft.au=He%2C+Yizhou&rft.date=2023-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=31&rft.issue=10&rft.spage=3470&rft.epage=3484&rft_id=info:doi/10.1109%2FTFUZZ.2023.3259726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2023_3259726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon