Novel Discretized Zeroing Neural Network Models for Time-Varying Optimization Aided With Predictor-Corrector Methods

In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and st...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 36; číslo 8; s. 14037 - 14048
Hlavní autori: Kong, Ying, Chen, Xi, Jiang, Yunliang, Sun, Danfeng, Zhang, Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.08.2025
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models.
AbstractList In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models.In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models.
In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models.
Author Jiang, Yunliang
Sun, Danfeng
Chen, Xi
Zhang, Jun
Kong, Ying
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-3738-0057
  surname: Kong
  fullname: Kong, Ying
  email: kongying-888@163.com
  organization: Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
– sequence: 2
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
– sequence: 3
  givenname: Yunliang
  orcidid: 0000-0003-4500-5836
  surname: Jiang
  fullname: Jiang, Yunliang
  email: jyl@zjhu.edu.cn
  organization: Zhejiang Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
– sequence: 4
  givenname: Danfeng
  orcidid: 0000-0002-7332-1169
  surname: Sun
  fullname: Sun, Danfeng
  email: danfeng.sun@hdu.edu.cn
  organization: Department of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhang@ieee.org
  organization: Zhejiang Normal University, Jinhua, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40030716$$D View this record in MEDLINE/PubMed
BookMark eNpNkVtPGzEQhS2UqqTAH6gQ8mNfNvV1L49RegEpLEikLerLylnPEtPddWp7i-DX4yUBdV5mHr4zmjPnA5r0tgeEPlIyo5QUn1dlubyZMcLEjEvKJJEHaMpoyhLG83zyNme3h-jE-3sSKyUyFcV7dCgI4SSj6RSF0v6DFn8xvnYQzBNo_BucNf0dLmFwqo0tPFj3B19aDa3HjXV4ZTpIfir3OGJX22A686SCsT2eGx03_DJhg68daFMH65KFdQ7GCV9C2Fjtj9G7RrUeTvb9CP349nW1OE-WV98vFvNlUrNMhqRuIHqRTV1TqjKmWCGyRrBcC7lWBSWK1rTQTZaKtYKiiG_gAECI1FIUWuX8CH3a7d06-3cAH6ou-oS2VT3YwVecZlwQQbIRPdujw7oDXW2d6aLB6vVTEWA7oHbWewfNG0JJNSZSvSRSjYlU-0Si6HQnMvGw_wQ5ETnj_BkP84f1
CODEN ITNNAL
Cites_doi 10.1109/TNNLS.2018.2861404
10.1109/TSP.2017.2728498
10.1016/j.cam.2018.08.017
10.1007/s10898-016-0437-1
10.1115/1.4025748
10.1016/j.neucom.2016.05.010
10.1109/TCYB.2020.3009110
10.1109/TII.2019.2933748
10.1016/j.amc.2013.10.072
10.1109/TSMC.2018.2836968
10.1007/s11075-018-0561-8
10.1109/TNNLS.2019.2938866
10.1109/TSMC.2017.2751259
10.1016/j.amc.2013.08.033
10.1109/TNNLS.2016.2636834
10.1109/TIE.2018.2870406
10.1109/TIE.2020.2970669
10.1109/TNNLS.2021.3108050
10.1109/tsmc.2024.3374754
10.1109/TNNLS.2020.3028136
10.1109/TII.2020.3032158
10.1109/TNNLS.2015.2435014
10.1109/TCYB.2021.3104138
10.1007/s11075-020-00946-1
10.1109/TSMC.2020.2998485
10.1109/TNNLS.2020.3007509
10.1109/TIE.2018.2851960
10.1109/31.68301
10.1016/j.amc.2013.04.033
10.1016/j.physleta.2017.03.025
10.1109/TSMC.2018.2856266
10.1007/s11071-016-2681-9
10.1109/JAS.2020.1003381
10.1109/tase.2023.3310498
10.1016/j.neucom.2020.05.093
10.1109/TNNLS.2017.2761443
10.1109/tnnls.2022.3230898
10.1007/s11075-017-0302-4
10.1137/1.9780898717839
10.1109/TNNLS.2018.2853732
10.1109/TSMC.2019.2900344
10.1017/CBO9780511801181
10.1109/TNNLS.2014.2342260
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2024.3512505
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 14048
ExternalDocumentID 40030716
10_1109_TNNLS_2024_3512505
10804823
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U22A20102
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LZY22E050002
  funderid: 10.13039/501100004731
– fundername: “Pioneer” and “Leading Goose” Research and Development Program of Zhejiang Province
  grantid: 2023C01150
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
AARMG
NPM
RIG
7X8
ID FETCH-LOGICAL-c275t-cfe2385fcc11a72a2947f428d45ba910a1c19df764bae993513eee005d549da83
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381475400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 18:54:26 EDT 2025
Thu Aug 07 06:25:50 EDT 2025
Sat Nov 29 07:40:04 EST 2025
Sun Sep 28 03:48:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-cfe2385fcc11a72a2947f428d45ba910a1c19df764bae993513eee005d549da83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4500-5836
0000-0002-7332-1169
0000-0001-7835-9871
0000-0002-3738-0057
PMID 40030716
PQID 3173404078
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3173404078
crossref_primary_10_1109_TNNLS_2024_3512505
pubmed_primary_40030716
ieee_primary_10804823
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Lambert (ref44) 1991
Lambert (ref29) 1973
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1109/TNNLS.2018.2861404
– ident: ref42
  doi: 10.1109/TSP.2017.2728498
– ident: ref21
  doi: 10.1016/j.cam.2018.08.017
– ident: ref43
  doi: 10.1007/s10898-016-0437-1
– ident: ref2
  doi: 10.1115/1.4025748
– ident: ref27
  doi: 10.1016/j.neucom.2016.05.010
– ident: ref28
  doi: 10.1109/TCYB.2020.3009110
– ident: ref38
  doi: 10.1109/TII.2019.2933748
– ident: ref7
  doi: 10.1016/j.amc.2013.10.072
– ident: ref16
  doi: 10.1109/TSMC.2018.2836968
– volume-title: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem.
  year: 1991
  ident: ref44
– ident: ref18
  doi: 10.1007/s11075-018-0561-8
– ident: ref35
  doi: 10.1109/TNNLS.2019.2938866
– ident: ref36
  doi: 10.1109/TSMC.2017.2751259
– ident: ref6
  doi: 10.1016/j.amc.2013.08.033
– ident: ref4
  doi: 10.1109/TNNLS.2016.2636834
– ident: ref8
  doi: 10.1109/TIE.2018.2870406
– ident: ref32
  doi: 10.1109/TIE.2020.2970669
– ident: ref14
  doi: 10.1109/TNNLS.2021.3108050
– ident: ref41
  doi: 10.1109/tsmc.2024.3374754
– ident: ref24
  doi: 10.1109/TNNLS.2020.3028136
– ident: ref33
  doi: 10.1109/TII.2020.3032158
– ident: ref13
  doi: 10.1109/TNNLS.2015.2435014
– ident: ref34
  doi: 10.1109/TCYB.2021.3104138
– ident: ref37
  doi: 10.1007/s11075-020-00946-1
– ident: ref9
  doi: 10.1109/TSMC.2020.2998485
– ident: ref39
  doi: 10.1109/TNNLS.2020.3007509
– ident: ref11
  doi: 10.1109/TIE.2018.2851960
– ident: ref45
  doi: 10.1109/31.68301
– ident: ref5
  doi: 10.1016/j.amc.2013.04.033
– ident: ref3
  doi: 10.1016/j.physleta.2017.03.025
– ident: ref26
  doi: 10.1109/TSMC.2018.2856266
– ident: ref15
  doi: 10.1007/s11071-016-2681-9
– ident: ref12
  doi: 10.1109/JAS.2020.1003381
– ident: ref10
  doi: 10.1109/tase.2023.3310498
– ident: ref25
  doi: 10.1016/j.neucom.2020.05.093
– ident: ref23
  doi: 10.1109/TNNLS.2017.2761443
– ident: ref40
  doi: 10.1109/tnnls.2022.3230898
– ident: ref17
  doi: 10.1007/s11075-017-0302-4
– ident: ref30
  doi: 10.1137/1.9780898717839
– ident: ref19
  doi: 10.1109/TNNLS.2018.2853732
– ident: ref22
  doi: 10.1109/TSMC.2019.2900344
– ident: ref31
  doi: 10.1017/CBO9780511801181
– ident: ref1
  doi: 10.1109/TNNLS.2014.2342260
– volume-title: Computational Methods in Ordinary Differential Equations.
  year: 1973
  ident: ref29
SSID ssj0000605649
Score 2.4774542
Snippet In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 14037
SubjectTerms General linear three-step (GLTS) rules
Geophysical measurement techniques
Ground penetrating radar
Iterative methods
Kinematics
manipulator trajectory planning
Mathematical models
Neural networks
Numerical models
Numerical stability
Optimization
Planning
predictor-corrector discrete zeroing neural network (PC-DZNN)
time-varying optimization (TVO)
Title Novel Discretized Zeroing Neural Network Models for Time-Varying Optimization Aided With Predictor-Corrector Methods
URI https://ieeexplore.ieee.org/document/10804823
https://www.ncbi.nlm.nih.gov/pubmed/40030716
https://www.proquest.com/docview/3173404078
Volume 36
WOSCitedRecordID wos001381475400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BqioupaWUbluQK3GrAuuvODkiCuIAKRLQrnqJvI4tIsGmymY59Nd3xkkQFw69-eCMIs_Y88Yz4wdwoJzX1oU8ybXBAEVrkeBMqgQwgQc7F1q6SDZhiiKbzfKroVk99sJ472PxmT-kYczlV41b0VXZEdXDqUzIdVg3xvTNWk8XKlME5mmEu4KnIhHSzMYmmWl-dFMUF9cYDgp1KNHHod_fhNcqmjhRnT_zSZFk5WW8Gf3O2dZ__vFbeDMATHbcW8Q7WPOLbdgayRvYsJffQ1c0j_6efa_x3PBd_ddX7LdvG_RkjB7sQBFFXyHOiC7tfskQ3TJqGEl-2pZ6o9gPPG0ehjZOdlxXKOFX3d2xq5aSPxjLJydE_UEjdhmJqpc7cHt2enNyngwUDIkTRneJCx59ug7OcW6NsCJXJmDEUik9t4g0LHc8r4JJ1dx6hDqaS1wD3NkVxp2VzeQH2Fg0C_8RmDSVydKcZ_NgVCpcZmRQXjnu0IuKoCbwbVRC-ad_aaOMEco0L6P2StJeOWhvAju02s9m9gs9ga-j4krcKJT9sAvfrJYlAiWpppS2nMBur9Gnr0dD-PSC1M-wKYj3Nxb-fYGNrl35PXjlHrt62e6jNc6y_WiN_wC2D9o6
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQdAL5VHK8jQSN5R2_YqTY1WoitiGSiyw4hJ5HVuN1G5QNtsDv54ZJ6l66YGbD84o8ow933hm_AF8UM5r60Ke5NpggKK1SHAmVQKYwINdCi1dJJswRZEtFvnZ0Kwee2G897H4zO_TMObyq8Zt6KrsgOrhVCbkXbinlRK8b9e6vlKZIjRPI-AVPBWJkGYxtslM84N5Ucy-Y0Ao1L5EL4eefxseqGjkRHZ-wytFmpXbEWf0PMc7__nPj-HRADHZYW8TT-COXz2FnZG-gQ27-Rl0RXPlL9inGk8O39V_fcV--7ZBX8boyQ4UUfQ14owI0y7WDPEto5aR5KdtqTuKfcPz5nJo5GSHdYUSftXdOTtrKf2D0XxyROQfNGKnkap6vQs_jj_Pj06SgYQhccLoLnHBo1fXwTnOrRFW5MoEjFkqpZcWsYbljudVMKlaWo9gR3OJa4B7u8LIs7KZfA5bq2blXwCTpjJZmvNsGYxKhcuMDMorxx36URHUBD6OSij_9G9tlDFGmeZl1F5J2isH7U1gl1b7xsx-oSfwflRciVuF8h925ZvNukSoJNWUEpcT2Os1ev31aAgvb5H6Dh6ezE9n5exL8fUVbAtiAY5lgK9hq2s3_g3cd1ddvW7fRpv8BxLR3Jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Discretized+Zeroing+Neural+Network+Models+for+Time-Varying+Optimization+Aided+With+Predictor-Corrector+Methods&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Kong%2C+Ying&rft.au=Chen%2C+Xi&rft.au=Jiang%2C+Yunliang&rft.au=Sun%2C+Danfeng&rft.date=2025-08-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2024.3512505&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon