Novel Discretized Zeroing Neural Network Models for Time-Varying Optimization Aided With Predictor-Corrector Methods
In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and st...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 36; číslo 8; s. 14037 - 14048 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.08.2025
|
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models. |
|---|---|
| AbstractList | In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models.In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models. In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear three-step (GLTS) rules provided. Afterward, a time-varying optimization (TVO) problem, which is deemed as a discrete TVO has been formulated and studied. The classical discrete zeroing neural network via Zhang et al. discretization (ZD-DZNN) is often utilized to obtain the solution. Actually, the stepsize domain of the DZNN model is a great factor for the dynamical stability. To enlarge the stepsize domain of the DZNN model, specific GLTS-type PC-DZNN models are applied to solve the TVO problem. Theoretical analyses show that better stability of the DZNN can be achieved by PC methods. Numerical simulative comparisons between the proposed PC-DZNN models and the ZD-DZNN in terms of stability are provided for further illustrations. In addition, motion planning of a PA10 manipulator and physical kinematics on UR5 formed as a TVO problem has been solved efficiently by applying the specific GLTS-type PC-DZNN models. |
| Author | Jiang, Yunliang Sun, Danfeng Chen, Xi Zhang, Jun Kong, Ying |
| Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0002-3738-0057 surname: Kong fullname: Kong, Ying email: kongying-888@163.com organization: Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China – sequence: 2 givenname: Xi surname: Chen fullname: Chen, Xi organization: Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China – sequence: 3 givenname: Yunliang orcidid: 0000-0003-4500-5836 surname: Jiang fullname: Jiang, Yunliang email: jyl@zjhu.edu.cn organization: Zhejiang Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China – sequence: 4 givenname: Danfeng orcidid: 0000-0002-7332-1169 surname: Sun fullname: Sun, Danfeng email: danfeng.sun@hdu.edu.cn organization: Department of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun email: junzhang@ieee.org organization: Zhejiang Normal University, Jinhua, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40030716$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkVtPGzEQhS2UqqTAH6gQ8mNfNvV1L49RegEpLEikLerLylnPEtPddWp7i-DX4yUBdV5mHr4zmjPnA5r0tgeEPlIyo5QUn1dlubyZMcLEjEvKJJEHaMpoyhLG83zyNme3h-jE-3sSKyUyFcV7dCgI4SSj6RSF0v6DFn8xvnYQzBNo_BucNf0dLmFwqo0tPFj3B19aDa3HjXV4ZTpIfir3OGJX22A686SCsT2eGx03_DJhg68daFMH65KFdQ7GCV9C2Fjtj9G7RrUeTvb9CP349nW1OE-WV98vFvNlUrNMhqRuIHqRTV1TqjKmWCGyRrBcC7lWBSWK1rTQTZaKtYKiiG_gAECI1FIUWuX8CH3a7d06-3cAH6ou-oS2VT3YwVecZlwQQbIRPdujw7oDXW2d6aLB6vVTEWA7oHbWewfNG0JJNSZSvSRSjYlU-0Si6HQnMvGw_wQ5ETnj_BkP84f1 |
| CODEN | ITNNAL |
| Cites_doi | 10.1109/TNNLS.2018.2861404 10.1109/TSP.2017.2728498 10.1016/j.cam.2018.08.017 10.1007/s10898-016-0437-1 10.1115/1.4025748 10.1016/j.neucom.2016.05.010 10.1109/TCYB.2020.3009110 10.1109/TII.2019.2933748 10.1016/j.amc.2013.10.072 10.1109/TSMC.2018.2836968 10.1007/s11075-018-0561-8 10.1109/TNNLS.2019.2938866 10.1109/TSMC.2017.2751259 10.1016/j.amc.2013.08.033 10.1109/TNNLS.2016.2636834 10.1109/TIE.2018.2870406 10.1109/TIE.2020.2970669 10.1109/TNNLS.2021.3108050 10.1109/tsmc.2024.3374754 10.1109/TNNLS.2020.3028136 10.1109/TII.2020.3032158 10.1109/TNNLS.2015.2435014 10.1109/TCYB.2021.3104138 10.1007/s11075-020-00946-1 10.1109/TSMC.2020.2998485 10.1109/TNNLS.2020.3007509 10.1109/TIE.2018.2851960 10.1109/31.68301 10.1016/j.amc.2013.04.033 10.1016/j.physleta.2017.03.025 10.1109/TSMC.2018.2856266 10.1007/s11071-016-2681-9 10.1109/JAS.2020.1003381 10.1109/tase.2023.3310498 10.1016/j.neucom.2020.05.093 10.1109/TNNLS.2017.2761443 10.1109/tnnls.2022.3230898 10.1007/s11075-017-0302-4 10.1137/1.9780898717839 10.1109/TNNLS.2018.2853732 10.1109/TSMC.2019.2900344 10.1017/CBO9780511801181 10.1109/TNNLS.2014.2342260 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNNLS.2024.3512505 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 14048 |
| ExternalDocumentID | 40030716 10_1109_TNNLS_2024_3512505 10804823 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U22A20102 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province grantid: LZY22E050002 funderid: 10.13039/501100004731 – fundername: “Pioneer” and “Leading Goose” Research and Development Program of Zhejiang Province grantid: 2023C01150 funderid: 10.13039/501100012166 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION AARMG NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c275t-cfe2385fcc11a72a2947f428d45ba910a1c19df764bae993513eee005d549da83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001381475400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 18:54:26 EDT 2025 Thu Aug 07 06:25:50 EDT 2025 Sat Nov 29 07:40:04 EST 2025 Sun Sep 28 03:48:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c275t-cfe2385fcc11a72a2947f428d45ba910a1c19df764bae993513eee005d549da83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4500-5836 0000-0002-7332-1169 0000-0001-7835-9871 0000-0002-3738-0057 |
| PMID | 40030716 |
| PQID | 3173404078 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3173404078 crossref_primary_10_1109_TNNLS_2024_3512505 pubmed_primary_40030716 ieee_primary_10804823 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Lambert (ref44) 1991 Lambert (ref29) 1973 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref20 doi: 10.1109/TNNLS.2018.2861404 – ident: ref42 doi: 10.1109/TSP.2017.2728498 – ident: ref21 doi: 10.1016/j.cam.2018.08.017 – ident: ref43 doi: 10.1007/s10898-016-0437-1 – ident: ref2 doi: 10.1115/1.4025748 – ident: ref27 doi: 10.1016/j.neucom.2016.05.010 – ident: ref28 doi: 10.1109/TCYB.2020.3009110 – ident: ref38 doi: 10.1109/TII.2019.2933748 – ident: ref7 doi: 10.1016/j.amc.2013.10.072 – ident: ref16 doi: 10.1109/TSMC.2018.2836968 – volume-title: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. year: 1991 ident: ref44 – ident: ref18 doi: 10.1007/s11075-018-0561-8 – ident: ref35 doi: 10.1109/TNNLS.2019.2938866 – ident: ref36 doi: 10.1109/TSMC.2017.2751259 – ident: ref6 doi: 10.1016/j.amc.2013.08.033 – ident: ref4 doi: 10.1109/TNNLS.2016.2636834 – ident: ref8 doi: 10.1109/TIE.2018.2870406 – ident: ref32 doi: 10.1109/TIE.2020.2970669 – ident: ref14 doi: 10.1109/TNNLS.2021.3108050 – ident: ref41 doi: 10.1109/tsmc.2024.3374754 – ident: ref24 doi: 10.1109/TNNLS.2020.3028136 – ident: ref33 doi: 10.1109/TII.2020.3032158 – ident: ref13 doi: 10.1109/TNNLS.2015.2435014 – ident: ref34 doi: 10.1109/TCYB.2021.3104138 – ident: ref37 doi: 10.1007/s11075-020-00946-1 – ident: ref9 doi: 10.1109/TSMC.2020.2998485 – ident: ref39 doi: 10.1109/TNNLS.2020.3007509 – ident: ref11 doi: 10.1109/TIE.2018.2851960 – ident: ref45 doi: 10.1109/31.68301 – ident: ref5 doi: 10.1016/j.amc.2013.04.033 – ident: ref3 doi: 10.1016/j.physleta.2017.03.025 – ident: ref26 doi: 10.1109/TSMC.2018.2856266 – ident: ref15 doi: 10.1007/s11071-016-2681-9 – ident: ref12 doi: 10.1109/JAS.2020.1003381 – ident: ref10 doi: 10.1109/tase.2023.3310498 – ident: ref25 doi: 10.1016/j.neucom.2020.05.093 – ident: ref23 doi: 10.1109/TNNLS.2017.2761443 – ident: ref40 doi: 10.1109/tnnls.2022.3230898 – ident: ref17 doi: 10.1007/s11075-017-0302-4 – ident: ref30 doi: 10.1137/1.9780898717839 – ident: ref19 doi: 10.1109/TNNLS.2018.2853732 – ident: ref22 doi: 10.1109/TSMC.2019.2900344 – ident: ref31 doi: 10.1017/CBO9780511801181 – ident: ref1 doi: 10.1109/TNNLS.2014.2342260 – volume-title: Computational Methods in Ordinary Differential Equations. year: 1973 ident: ref29 |
| SSID | ssj0000605649 |
| Score | 2.4774542 |
| Snippet | In this article, we derive the predictor-corrector (PC) methods with three-order convergent precision, together with a class of specific general linear... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 14037 |
| SubjectTerms | General linear three-step (GLTS) rules Geophysical measurement techniques Ground penetrating radar Iterative methods Kinematics manipulator trajectory planning Mathematical models Neural networks Numerical models Numerical stability Optimization Planning predictor-corrector discrete zeroing neural network (PC-DZNN) time-varying optimization (TVO) |
| Title | Novel Discretized Zeroing Neural Network Models for Time-Varying Optimization Aided With Predictor-Corrector Methods |
| URI | https://ieeexplore.ieee.org/document/10804823 https://www.ncbi.nlm.nih.gov/pubmed/40030716 https://www.proquest.com/docview/3173404078 |
| Volume | 36 |
| WOSCitedRecordID | wos001381475400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BqioupaWUbluQK3GrAuuvODkiCuIAKRLQrnqJvI4tIsGmymY59Nd3xkkQFw69-eCMIs_Y88Yz4wdwoJzX1oU8ybXBAEVrkeBMqgQwgQc7F1q6SDZhiiKbzfKroVk99sJ472PxmT-kYczlV41b0VXZEdXDqUzIdVg3xvTNWk8XKlME5mmEu4KnIhHSzMYmmWl-dFMUF9cYDgp1KNHHod_fhNcqmjhRnT_zSZFk5WW8Gf3O2dZ__vFbeDMATHbcW8Q7WPOLbdgayRvYsJffQ1c0j_6efa_x3PBd_ddX7LdvG_RkjB7sQBFFXyHOiC7tfskQ3TJqGEl-2pZ6o9gPPG0ehjZOdlxXKOFX3d2xq5aSPxjLJydE_UEjdhmJqpc7cHt2enNyngwUDIkTRneJCx59ug7OcW6NsCJXJmDEUik9t4g0LHc8r4JJ1dx6hDqaS1wD3NkVxp2VzeQH2Fg0C_8RmDSVydKcZ_NgVCpcZmRQXjnu0IuKoCbwbVRC-ad_aaOMEco0L6P2StJeOWhvAju02s9m9gs9ga-j4krcKJT9sAvfrJYlAiWpppS2nMBur9Gnr0dD-PSC1M-wKYj3Nxb-fYGNrl35PXjlHrt62e6jNc6y_WiN_wC2D9o6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQdAL5VHK8jQSN5R2_YqTY1WoitiGSiyw4hJ5HVuN1G5QNtsDv54ZJ6l66YGbD84o8ow933hm_AF8UM5r60Ke5NpggKK1SHAmVQKYwINdCi1dJJswRZEtFvnZ0Kwee2G897H4zO_TMObyq8Zt6KrsgOrhVCbkXbinlRK8b9e6vlKZIjRPI-AVPBWJkGYxtslM84N5Ucy-Y0Ao1L5EL4eefxseqGjkRHZ-wytFmpXbEWf0PMc7__nPj-HRADHZYW8TT-COXz2FnZG-gQ27-Rl0RXPlL9inGk8O39V_fcV--7ZBX8boyQ4UUfQ14owI0y7WDPEto5aR5KdtqTuKfcPz5nJo5GSHdYUSftXdOTtrKf2D0XxyROQfNGKnkap6vQs_jj_Pj06SgYQhccLoLnHBo1fXwTnOrRFW5MoEjFkqpZcWsYbljudVMKlaWo9gR3OJa4B7u8LIs7KZfA5bq2blXwCTpjJZmvNsGYxKhcuMDMorxx36URHUBD6OSij_9G9tlDFGmeZl1F5J2isH7U1gl1b7xsx-oSfwflRciVuF8h925ZvNukSoJNWUEpcT2Os1ev31aAgvb5H6Dh6ezE9n5exL8fUVbAtiAY5lgK9hq2s3_g3cd1ddvW7fRpv8BxLR3Jk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Discretized+Zeroing+Neural+Network+Models+for+Time-Varying+Optimization+Aided+With+Predictor-Corrector+Methods&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Kong%2C+Ying&rft.au=Chen%2C+Xi&rft.au=Jiang%2C+Yunliang&rft.au=Sun%2C+Danfeng&rft.date=2025-08-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2024.3512505&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |