The Vector QD Algorithm for Smooth Functions (f, f′)

We deal with the functionz↦(f(z), f′(z)) wheref(z)=∑i⩾0aizi, (ai∈C) with limi→∞ai+1×ai−1/(ai)2=q. We investigate the convergence of the vector QD algorithm. We give the asymptotic behaviour of the generalized Hankel determinants. A convergence result on the vector orthogonal polynomials is proved....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory Jg. 86; H. 3; S. 255 - 269
1. Verfasser: Le Ferrand, Hervé
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.1996
Elsevier
Schlagworte:
ISSN:0021-9045, 1096-0430
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We deal with the functionz↦(f(z), f′(z)) wheref(z)=∑i⩾0aizi, (ai∈C) with limi→∞ai+1×ai−1/(ai)2=q. We investigate the convergence of the vector QD algorithm. We give the asymptotic behaviour of the generalized Hankel determinants. A convergence result on the vector orthogonal polynomials is proved.
AbstractList We deal with the functionz↦(f(z), f′(z)) wheref(z)=∑i⩾0aizi, (ai∈C) with limi→∞ai+1×ai−1/(ai)2=q. We investigate the convergence of the vector QD algorithm. We give the asymptotic behaviour of the generalized Hankel determinants. A convergence result on the vector orthogonal polynomials is proved.
Author Le Ferrand, Hervé
Author_xml – sequence: 1
  givenname: Hervé
  surname: Le Ferrand
  fullname: Le Ferrand, Hervé
  organization: Laboratoire d'Analyse Appliquée et d'Optimisation, Département de Mathématiques, Université de Bourgogne, BP 138, 21004, Dijon Cedex, France
BackLink https://hal.science/hal-03436147$$DView record in HAL
BookMark eNp1kM9Kw0AQhxepYFu9es7Rgokz-bfJsdTWCgURq9dls5k1W9qsbGLBm4_iM_gIPopPYkLFm8xhmB_zDcw3YoPa1sTYOUKAAOnVRrZVgHmeBt3Ej9gQIU99iCMYsCFAiH4OcXLCRk2zAUBMEhwyvq7IeyLVWufdX3vT7bN1pq12nu6Ch521beUtXmvVGls33oW-_PrQ3--fk1N2rOW2obPfPmaPi_l6tvRXdze3s-nKVyFPWr_QPJRFEZdFmFCGpAsZqrjETIddpXFWZDoDyXMiVIRU5jzilHLQCJksMBqzyeFuJbfixZmddG_CSiOW05XoM4jiKMWY7_vd4LCrnG0aR_oPQBC9ItErEr0i0SvqgOwAUPfB3pATjTJUKyqN65SI0pr_0B_CrG8c
ContentType Journal Article
Copyright 1996 Academic Press
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 1996 Academic Press
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
DOI 10.1006/jath.1996.0067
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0430
EndPage 269
ExternalDocumentID oai:HAL:hal-03436147v1
10_1006_jath_1996_0067
S0021904596900672
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACKIV
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WH7
WUQ
XOL
XPP
YQT
ZCG
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
ID FETCH-LOGICAL-c275t-bf72abb4db25e81efba2c4d18f2f2f648b8f80a79ee1ce1ed9737e670f108ab13
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1006_jath_1996_0067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9045
IngestDate Tue Oct 14 20:44:53 EDT 2025
Sat Nov 29 07:25:41 EST 2025
Fri Feb 23 02:25:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-bf72abb4db25e81efba2c4d18f2f2f648b8f80a79ee1ce1ed9737e670f108ab13
OpenAccessLink https://dx.doi.org/10.1006/jath.1996.0067
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_03436147v1
crossref_primary_10_1006_jath_1996_0067
elsevier_sciencedirect_doi_10_1006_jath_1996_0067
PublicationCentury 1900
PublicationDate 1996-09-01
PublicationDateYYYYMMDD 1996-09-01
PublicationDate_xml – month: 09
  year: 1996
  text: 1996-09-01
  day: 01
PublicationDecade 1990
PublicationTitle Journal of approximation theory
PublicationYear 1996
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
SSID ssj0011551
Score 1.4261789
Snippet We deal with the functionz↦(f(z), f′(z)) wheref(z)=∑i⩾0aizi, (ai∈C) with limi→∞ai+1×ai−1/(ai)2=q. We investigate the convergence of the vector QD algorithm. We...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 255
SubjectTerms Mathematics
Numerical Analysis
Title The Vector QD Algorithm for Smooth Functions (f, f′)
URI https://dx.doi.org/10.1006/jath.1996.0067
https://hal.science/hal-03436147
Volume 86
WOSCitedRecordID wos10_1006_jath_1996_0067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0430
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011551
  issn: 0021-9045
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLa6jgu4QPyK8acIMQEqAdtJY_sybKs6NCYmBupdZDs2rbSlU1eqXvIoPAOPwKPwJBzHTtYxTQIkFCmKLMVxzhedHJ-f7yD0lGENG41MxlpIHqcE61iVysRCpExyqmQpdN1sgu3v89FIvO90dptamMURqyq-XIqT_wo1jAHYrnT2L-BuJ4UBuAbQ4Qyww_mPgf9U--J7B9u9_OjzFPb_4-M6n_DD8RSQ6Q3gZ-Yz4MC-dKyMm1t0M8c2ZD68oY1_4KLVWnOQLye-4NGXQbZO-T3TG5jZLKRKDkEL-TD8mWfBJyOLVc9CW_JyLiMz5HR4DshXxmtN7G5OQ4AlqNXAcD1Z3XV7Hdnvr_xuqe_UckGTgzaoOwjMx66g0kWMfNuO39ixXbCZuOUI2Oa7sPIaWqesL3gXree7O6O3bUjJ2YY-38evv2HwxNnr80-5zEJZGze-9tr2OLyBrgfxR7kH-ybqmOoWuvauZdw9vY0YwB552KOD7aiFPQLYIw971MIePbcvf3yzP79-f3EHfRzsHG4N49AUI9bwXvNYWUalUmmpaN9wYqySVKcl4ZbCkaVcccuxZMIYog0xpWAJMxnDlmAuFUnuom41rcw9FGlOpTCESyxtah1nre6L1CRcp6JkUm-gZ40gihPPfVJ4luuscCIrnMgKJ7INRBo5FcFy8xZZAXBees8TEGg7saM5H-Z7hRvDSZqA2cgW5P4_TPwAXT37mh-i7nz2xTxCV_RiPjmdPQ6fxS9Hgm1F
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Vector+QD+Algorithm+for+Smooth+Functions+%28f%2C%C2%A0f%E2%80%B2%29&rft.jtitle=Journal+of+approximation+theory&rft.au=Le+Ferrand%2C+Herv%C3%A9&rft.date=1996-09-01&rft.pub=Elsevier+Inc&rft.issn=0021-9045&rft.eissn=1096-0430&rft.volume=86&rft.issue=3&rft.spage=255&rft.epage=269&rft_id=info:doi/10.1006%2Fjath.1996.0067&rft.externalDocID=S0021904596900672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9045&client=summon