Sensor, IoT-based post-harvest shelf life determination of tomato (Lycopersicon esculentum) through machine learning predictive analysis for intelligent transport

Aim: The current research explores the potential of machine learning predictive models in optimizing the storage conditions of tomatoes. This is achieved through Internet of Things (IoT) technology, sensors, cameras, and microprocessors integrated into refrigerators along the supply chain. Methodolo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of environmental biology Ročník 45; číslo 4; s. 455 - 464
Hlavní autori: Shankaraswamy, J., Radhika, T.S.L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lucknow Triveni Enterprises 01.07.2024
Predmet:
ISSN:0254-8704, 2394-0379
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Aim: The current research explores the potential of machine learning predictive models in optimizing the storage conditions of tomatoes. This is achieved through Internet of Things (IoT) technology, sensors, cameras, and microprocessors integrated into refrigerators along the supply chain. Methodology: Controlling temperature and humidity inside the refrigerated container was accomplished by implementing the Arduino microcontroller and supplementary hardware components, including the ESP32 module relay, an advancement over the ESP8266 microcontroller. The Arduino Integrated Development Environment (IDE) was used as software platform for this experimentation. Various parameters, including humidity, oxygen, carbon-di-oxide, and shelf life, were recorded at different temperatures and on different days. Subsequently, the collected data was analyzed employing machine-learning models to determine the most effective prediction model for these variables. Results: From the results it has been revealed that apolynomial of degree 4 is the best-fit regressor model for the data on humidity. Polynomials of degrees 2, 2, and 3 are the best models for the target variables oxygen, carbon-di-oxide, and shelf life. Interpretation: During analysis, This result suggests that different polynomial degrees are optimal for modeling different variables in the dataset. Polynomials of degrees 2, 2, and 3 are the best ML models for the target variables oxygen, carbon-di-oxide, and shelf life, respectively,to enhance the effectiveness of our predictive models. Key words: Io T sensors, ML models, Quantile loss, Supply chain, Tomato
AbstractList Aim: The current research explores the potential of machine learning predictive models in optimizing the storage conditions of tomatoes. This is achieved through Internet of Things (loT) technology, sensors, cameras, and microprocessors integrated into refrigerators along the supply chain. Methodology: Controlling temperature and humidity inside the refrigerated containerwas accomplished by implementing the Arduino microcontroller and supplementary hardware components, including the ESP32 module relay, an advancement over the ESP8266 microcontroller. The Arduino Integrated Development Environment (IDE) was used as software platform for this experimentation. Various parameters, including humidity, oxygen, carbon-di-oxide, and shelf life, were recorded at different temperatures and on different days. Subsequently, the collected data was analyzed employing machine-learning models to determine the most effective prediction model for these variables. From the results it has been revealed that apolynomial of degree 4 is the best-fit regressor model for the data on humidity. Polynomials of degrees 2,2, and 3 are the best models forthe target variables oxygen, carbon-di-oxide, and shelf life. Interpretation: During analysis, This result suggests that different polynomial degrees are optimal for modeling different variables in the dataset. Polynomials of degrees 2,2, and 3 are the best ML models forthe target variables oxygen, carbon-di-oxide, and shelf life, respectively.to enhance the effectiveness of ourpredictive models.
Aim: The current research explores the potential of machine learning predictive models in optimizing the storage conditions of tomatoes. This is achieved through Internet of Things (IoT) technology, sensors, cameras, and microprocessors integrated into refrigerators along the supply chain. Methodology: Controlling temperature and humidity inside the refrigerated container was accomplished by implementing the Arduino microcontroller and supplementary hardware components, including the ESP32 module relay, an advancement over the ESP8266 microcontroller. The Arduino Integrated Development Environment (IDE) was used as software platform for this experimentation. Various parameters, including humidity, oxygen, carbon-di-oxide, and shelf life, were recorded at different temperatures and on different days. Subsequently, the collected data was analyzed employing machine-learning models to determine the most effective prediction model for these variables. Results: From the results it has been revealed that apolynomial of degree 4 is the best-fit regressor model for the data on humidity. Polynomials of degrees 2, 2, and 3 are the best models for the target variables oxygen, carbon-di-oxide, and shelf life. Interpretation: During analysis, This result suggests that different polynomial degrees are optimal for modeling different variables in the dataset. Polynomials of degrees 2, 2, and 3 are the best ML models for the target variables oxygen, carbon-di-oxide, and shelf life, respectively,to enhance the effectiveness of our predictive models. Key words: Io T sensors, ML models, Quantile loss, Supply chain, Tomato
Author Shankaraswamy, J.
Radhika, T.S.L.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0002-5623-6384
  surname: Shankaraswamy
  fullname: Shankaraswamy, J.
– sequence: 2
  givenname: T.S.L.
  surname: Radhika
  fullname: Radhika, T.S.L.
BookMark eNp9kc9qGzEQxkVxoY6TF-hJ0EsD3VpeSfvnGEyaBNwUkvQstNqRV0YrbSWtwa_TJ62S9JRD5jIwfL9hvvnO0MJ5Bwh93pDvZclosz5At2Z8zdY_H-4LTmn7AS1L2rKC0LpdoCUpOSuamrBP6CLGA8lF27Lm7RL9fQQXffiG7_xT0ckIPZ58TMUgwxFiwnEAq7E1GnAPCcJonEzGO-w1Tn6UyeOvu5PyE4RoVJ5DVLMFl-bxEqch-Hk_4FGqwTjAFmRwxu3xFKA3KpkjYOmkPUUTsfYBG5fAWrPPPE5Bujj5kM7RRy1thIv_fYV-_7h-2t4Wu183d9urXaGylVR0fVM2G6IaqjtKKt1y1kvdag4KJKeSqqokXcsrTZUmfd1TwiraadWpqmOyoiv05XXvFPyfOZsXBz-HfF4UlDSM1aSpN1nVvKpU8DEG0EKZ9PKSfLCxYkPESygihyIYF0zkUMRzKBkt36BTMKMMp_egf65umMI
CitedBy_id crossref_primary_10_1177_18761364251372647
ContentType Journal Article
Copyright Copyright Triveni Enterprises Jul 2024
Copyright_xml – notice: Copyright Triveni Enterprises Jul 2024
CorporateAuthor Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman,Wanaparthy-509 382, India
Department of Mathematics, BITS Pilani, Hyderabad Campus, Hyderabad-500 078, India
CorporateAuthor_xml – name: Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman,Wanaparthy-509 382, India
– name: Department of Mathematics, BITS Pilani, Hyderabad Campus, Hyderabad-500 078, India
DBID AAYXX
CITATION
04Q
04W
3V.
7ST
7U7
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7N
M7P
M7S
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOI 10.22438/jeb/45/4/MRN-5339
DatabaseName CrossRef
India Database
India Database: Science & Technology
ProQuest Central (Corporate)
Environment Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest MSED
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Indian Journals
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Toxicology Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
Indian Journals: Science & Technology
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList ProQuest Central Student
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2394-0379
EndPage 464
ExternalDocumentID 10_22438_jeb_45_4_MRN_5339
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 04Q
04W
5GY
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
AAYXX
ABJCF
ABUWG
ACIWK
ACPRK
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BANNL
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EDH
FYUFA
HCIFZ
HMCUK
L6V
LK8
M1P
M7P
M7S
OK1
PATMY
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RNS
UKHRP
3V.
7ST
7U7
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c275t-bd82810c83fb306f954daf9f5ecea53a3c620b956f3cf0d7d30463bfcbc6b4a63
IEDL.DBID 7X7
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001251837300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-8704
IngestDate Sat Nov 29 14:18:36 EST 2025
Sat Nov 29 02:44:47 EST 2025
Tue Nov 18 21:03:45 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-bd82810c83fb306f954daf9f5ecea53a3c620b956f3cf0d7d30463bfcbc6b4a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5623-6384
PQID 3084470871
PQPubID 636374
PageCount 10
ParticipantIDs proquest_journals_3084470871
crossref_citationtrail_10_22438_jeb_45_4_MRN_5339
crossref_primary_10_22438_jeb_45_4_MRN_5339
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Lucknow
PublicationPlace_xml – name: Lucknow
PublicationTitle Journal of environmental biology
PublicationYear 2024
Publisher Triveni Enterprises
Publisher_xml – name: Triveni Enterprises
SSID ssj0000392759
Score 2.3443985
Snippet Aim: The current research explores the potential of machine learning predictive models in optimizing the storage conditions of tomatoes. This is achieved...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 455
SubjectTerms Artificial intelligence
Carbon
Commodities
Data collection
Effectiveness
Food
Food quality
Fruits
Harvest
Horticulture
Humidity
Internet of Things
Learning algorithms
Lycopersicon esculentum
Machine learning
Microcontrollers
Microprocessors
Optimization
Oxygen
Physiology
Polynomials
Prediction models
Sensors
Shelf life
Software
Software development tools
Storage conditions
Supply chains
Temperature
Tomatoes
Vegetables
Title Sensor, IoT-based post-harvest shelf life determination of tomato (Lycopersicon esculentum) through machine learning predictive analysis for intelligent transport
URI https://www.proquest.com/docview/3084470871
Volume 45
WOSCitedRecordID wos001251837300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2394-0379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392759
  issn: 0254-8704
  databaseCode: M7P
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2394-0379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392759
  issn: 0254-8704
  databaseCode: M7S
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2394-0379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392759
  issn: 0254-8704
  databaseCode: PATMY
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2394-0379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392759
  issn: 0254-8704
  databaseCode: 7X7
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: India Database
  customDbUrl:
  eissn: 2394-0379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392759
  issn: 0254-8704
  databaseCode: 04Q
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/indianjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2394-0379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392759
  issn: 0254-8704
  databaseCode: BENPR
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoCxIbylMUysgLFiCw4sZ2nKyqgqYCqYyGtqDZRX7SQdPJkASk_g5f2muPM6ibbthkkThSlGPfh-_1OQi9ZoI6wb0kOmeS8EoXRBvIeSqV59ZKo12s4H8_kZNJOZtV07Th1qW2ysEmRkNtGxP2yDNGS84lhfj-cPWLBNWoUF1NEhpbaCfIZod5Lmdys8dCwfnLqJcWznzDwqd8fW4G_BYrs59OZ1xkPPtyOiEQ9lQ3fdNN0xz9zfHu_37pQ_QgRZr4aD01HqE7bvkY3RtHluqrJ-jvGSSwTfsef27OSfBlFq-aricXqg3MG7i7cAuPF3PvsB1aZgKIuPG4byDObfCbk6twpqUFoOG-Cy2twYVdvsVJ_QdfxlZNh5M2xQ-8akNhKJhYrBIdCoawGc83zKA97ge-9afo2_H4_OMnkgQbiIH_3BNtIX87oKZkXkMq4ivBrfKVF844JZhipsiphozMM-OplTbylWlvtCk0VwV7hraXzdI9R9iURWmNclbxkuuCKSuEdFIzLZ0rXLGHDgaoapPYzIOoxqKGrCbCWwO8NRc1rwHeOsC7h95t3lmtuTxuHb0_wFundd3V_7B9cfvjl-h-DuHPurF3H2337W_3Ct01f_p5147QFuVfR3GyjtDOh_FkejoKXafTeD27Biuc-iQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGGN2qhgBcggaiVNLbjZIEQglYddTqqYEDdGT_bQdPJkATQ_A4fwDdy7UkGddNdF2zzWjgn95wb33suQs8pTx1nXhCdUUFYqXOiDeQ8pcoya4XRLu7gfxmK0ag4Pi6P1tCfvhcmlFX2MTEGaluZ8I88oWnBmEhB37-dfydhalTYXe1HaCxhceAWvyBla94MPsD7fZFle7vj9_ukmypATCZ4S7SFJGMnNQX1GvSyLzmzypeeO-MUp4qaPEs1pA2eGp9aYaOplvZGm1wzlVN47hV0FWRElsZSwaPVP50UxIaI89lCjzkEmpQt-3SAJ2mRfHM6YTxhyeHHEQGZVZ7nwvNUEPlt7_b_tjJ30K1OSeN3S-jfRWtudg9d340u3Iv76PcnSNCrehsPqjEJXG3xvGpacqrq4CyCm1M39Xg68Q7bviQogBRXHrcV6PgKvxwuQs9ODUCG4y6U7AaKPnuFu-lG-CyWojrczd44wfM6bHwFCsGqs3vBkBbgycr5tMVt7yf_AH2-lAV6iNZn1cxtIGyKvLBGOatYwXROleVcOKGpFs7lLt9EOz00pOnc2sPQkKmErC3CSQKcJOOSSYCTDHDaRK9X98yXXiUXXr3Vw0l2cauR_7D06OLTz9CN_fHhUA4Ho4PH6GYGUm9ZxLyF1tv6h3uCrpmf7aSpn8ZPBKOvl428vxACVUM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor%2C+IoT-based+post-harvest+shelf+life+determination+of+tomato+%28Lycopersicon+esculentum%29+through+machine+learning+predictive+analysis+for+intelligent+transport&rft.jtitle=Journal+of+environmental+biology&rft.au=Shankaraswamy%2C+J&rft.au=Radhika%2C+T+S&rft.date=2024-07-01&rft.pub=Triveni+Enterprises&rft.issn=0254-8704&rft.eissn=2394-0379&rft.volume=45&rft.issue=4&rft.spage=455&rft.epage=464&rft_id=info:doi/10.22438%2Fjeb%2F45%2F4%2FMRN-5339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-8704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-8704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-8704&client=summon