Quantum computing and quantum-inspired techniques for feature subset selection: a review
Feature subset selection is essential for identifying relevant and non-redundant features, which enhances classification accuracy and simplifies machine learning models. Given the computational difficulties of determining optimal feature subsets, heuristic and metaheuristic algorithms have been wide...
Saved in:
| Published in: | Knowledge and information systems Vol. 67; no. 3; pp. 2019 - 2061 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer Nature B.V
01.03.2025
|
| Subjects: | |
| ISSN: | 0219-1377, 0219-3116 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Feature subset selection is essential for identifying relevant and non-redundant features, which enhances classification accuracy and simplifies machine learning models. Given the computational difficulties of determining optimal feature subsets, heuristic and metaheuristic algorithms have been widely used. Recently, the rise of quantum computing has led to the exploration of quantum-inspired metaheuristics and quantum-based approaches for this task. Although various studies have explored quantum-inspired and quantum-based approaches for feature subset selection, a comprehensive review that critically examines their significance, limitations, underlying mechanisms, and future directions remains lacking in the literature. This paper addresses this gap by presenting the first in-depth survey of these approaches. We systematically selected and analyzed relevant studies from prominent research databases, providing a detailed evaluation of quantum-inspired metaheuristics and quantum computing paradigms applied to feature subset selection. Our findings indicate that quantum-inspired metaheuristic approaches often deliver superior performance compared to traditional metaheuristic methods for feature subset selection. Nevertheless, their reliance on classical computing limits their ability to fully realize the advantages offered by quantum computing. The quantum-based feature subset selection methods, on the other hand, show considerable promise but are frequently constrained by the current limitations of quantum hardware, making large-scale feature subset selection challenging. Given the rapid evolution of quantum computing, research on both quantum-inspired and quantum-based feature subset selection remains insufficient to draw definitive conclusions. We are optimistic that this review will provide a foundation for future advancements in feature subset selection as quantum computing resources become more accessible. |
|---|---|
| AbstractList | Feature subset selection is essential for identifying relevant and non-redundant features, which enhances classification accuracy and simplifies machine learning models. Given the computational difficulties of determining optimal feature subsets, heuristic and metaheuristic algorithms have been widely used. Recently, the rise of quantum computing has led to the exploration of quantum-inspired metaheuristics and quantum-based approaches for this task. Although various studies have explored quantum-inspired and quantum-based approaches for feature subset selection, a comprehensive review that critically examines their significance, limitations, underlying mechanisms, and future directions remains lacking in the literature. This paper addresses this gap by presenting the first in-depth survey of these approaches. We systematically selected and analyzed relevant studies from prominent research databases, providing a detailed evaluation of quantum-inspired metaheuristics and quantum computing paradigms applied to feature subset selection. Our findings indicate that quantum-inspired metaheuristic approaches often deliver superior performance compared to traditional metaheuristic methods for feature subset selection. Nevertheless, their reliance on classical computing limits their ability to fully realize the advantages offered by quantum computing. The quantum-based feature subset selection methods, on the other hand, show considerable promise but are frequently constrained by the current limitations of quantum hardware, making large-scale feature subset selection challenging. Given the rapid evolution of quantum computing, research on both quantum-inspired and quantum-based feature subset selection remains insufficient to draw definitive conclusions. We are optimistic that this review will provide a foundation for future advancements in feature subset selection as quantum computing resources become more accessible. |
| Author | Mandal, Ashis Kumar Chakraborty, Basabi |
| Author_xml | – sequence: 1 givenname: Ashis Kumar surname: Mandal fullname: Mandal, Ashis Kumar – sequence: 2 givenname: Basabi surname: Chakraborty fullname: Chakraborty, Basabi |
| BookMark | eNp9kE9LxDAQxYOs4O7qF_AU8FxN0qZpvcniP1gQQcFbSJOJZtlNu0mq-O1t7Z48eBhmGN5v5vEWaOZbDwidU3JJCRFXkRJKeUZYMRSrWMaP0JwwWmc5peXsMNNciBO0iHFDCBUlpXP09twrn_od1u2u65Pz71h5g_fTNnM-di6AwQn0h3f7HiK2bcAWVOoD4Ng3ERKOsAWdXOuvscIBPh18naJjq7YRzg59iV7vbl9WD9n66f5xdbPONBM8ZaosK1AajK0bTgpOeFOA0apkSjdmcFnYxtaVFUVNGmtyQ2ogZWG0sEAJq_IlupjudqEd7SW5afvgh5cypyWvxZBJPaiqSaVDG2MAK7VLanScgnJbSYkcc5RTjnJg5G-Okg8o-4N2we1U-P4P-gFj4Hly |
| CitedBy_id | crossref_primary_10_3390_a18030154 crossref_primary_10_3390_encyclopedia5020048 crossref_primary_10_3390_ai6080165 crossref_primary_10_2174_0118750362380098250416071630 crossref_primary_10_1007_s00158_025_04078_9 |
| Cites_doi | 10.3390/app11146574 10.1038/nature23474 10.3389/fphy.2019.00048 10.1007/s42484-023-00099-z 10.1007/s10462-023-10470-y 10.1109/ACCESS.2019.2962155 10.1145/237814.237866 10.1109/ACCESS.2022.3180773 10.1007/978-1-4419-1153-7_1167 10.1016/j.asoc.2021.107221 10.1155/2020/8216874 10.1109/ISCIS.2008.4717949 10.1088/1361-6471/ac1391 10.1016/j.ijar.2020.08.010 10.1007/s11831-020-09412-6 10.3390/e23080970 10.1016/S1088-467X(97)00008-5 10.1016/0895-7177(93)90204-C 10.1007/978-3-319-26181-2_11 10.1007/978-3-540-71884-0_2 10.1007/s10586-024-04362-1 10.1038/s41598-019-49172-3 10.1109/72.846725 10.3390/sym12061046 10.1016/0167-8655(90)90078-G 10.1007/s11432-019-2633-y 10.1109/ISVLSI51109.2021.00089 10.1142/S0219749914300022 10.1007/s41870-023-01543-w 10.1103/PRXQuantum.2.017001 10.3233/IDA-160840 10.1109/MCI.2006.329691 10.1109/GrC.2007.87 10.1108/DTA-05-2020-0109 10.1016/j.eswa.2020.114072 10.1007/s12652-021-03441-0 10.3390/cancers15092507 10.1080/00029890.1987.12000742 10.1080/03772063.2015.1021385 10.1287/moor.1.3.287 10.1016/j.cie.2017.10.025 10.1109/TC.2021.3063618 10.1007/s11128-018-1924-8 10.1145/3293883.3302578 10.1103/PRXQuantum.2.010312 10.1007/s12652-020-02434-9 10.1109/ACCESS.2021.3056407 10.1016/j.jbi.2018.07.014 10.1007/s10489-017-0894-3 10.1007/s11042-023-16411-9 10.1007/0-306-48056-5_11 10.1109/CEC.2018.8477705 10.1371/journal.pone.0208561 10.1016/j.asoc.2020.106092 10.1016/B978-1-55860-247-2.50037-1 10.1142/S0218001423510011 10.1016/j.cosrev.2024.100619 10.1093/comjnl/bxm012 10.48550/arXiv.2311.05196 10.1109/MIS.2017.38 10.1126/sciadv.adj5170 10.1126/science.abb2823 10.1016/j.eswa.2024.123362 10.1016/j.advengsoft.2022.103337 10.1109/QCE53715.2022.00117 10.1007/s10489-019-01604-3 10.1016/j.ejor.2004.09.010 10.1016/j.cosrev.2018.11.002 10.1016/j.revip.2019.100028 10.1103/PhysRevLett.86.1889 10.1109/ACCESS.2019.2919956 10.38094/jastt1224 10.1007/s10462-017-9605-z 10.1145/3603273.3631193 10.1080/10556788.2013.834900 10.1006/jcph.1993.1010 10.1109/TKDE.2012.51 10.1007/978-1-4842-6522-2_5 10.1088/1402-4896/ad0184 10.1016/S0004-3702(97)00063-5 10.1016/j.knosys.2013.03.008 10.1007/s00521-022-07705-4 10.1007/978-3-030-54621-2_854-1 10.1088/0256-307X/35/11/110303 10.1109/TNNLS.2022.3190042 10.1002/0471739383.ch1 10.1007/s10462-022-10280-8 10.1007/s12065-022-00783-2 10.1109/ICCE-China.2017.7991050 10.1007/s13042-013-0226-9 10.1109/ICoICT55009.2022.9914872 10.1371/journal.pone.0166017 10.1201/9781315372006-19 10.1007/s00016-011-0057-6 10.1002/wics.101 10.1109/TASC.2014.2318294 10.1145/3136625 10.1109/SFCS.1994.365700 10.1504/IJAIP.2018.090792 10.1109/ICNN.1995.488968 10.1016/j.eswa.2015.07.007 10.1016/j.compbiomed.2015.08.010 10.1007/s10462-021-09970-6 10.1103/PhysRevLett.103.150502 10.1109/JSTARS.2021.3095377 10.1038/ncomms5213 10.1145/3477495.3531755 10.1080/0952813X.2023.2183267 10.1016/j.jksuci.2023.02.005 10.1016/B978-0-12-813314-9.00010-4 10.1007/978-3-030-78775-2_15 10.1016/j.eswa.2014.04.033 10.1109/ISKE.2008.4731082 10.1016/j.eswa.2014.04.019 10.1016/j.margen.2019.100723 10.1109/ICACA.2016.7887916 10.1007/978-3-319-93025-1_4 10.1109/CEC48606.2020.9185608 10.1109/NAFIPS.1996.534790 10.1016/j.compbiomed.2022.106520 10.1109/ICPR.2002.1048275 10.1007/BF01720782 10.1109/JSEE.2013.00051 10.1007/978-3-030-51965-0_43 10.5772/10545 10.1109/tpami.2007.250607 10.23919/DATE.2019.8715261 10.1002/9780470181386.ch8 10.1007/978-3-031-02518-1_2 10.1080/09500340.2014.930194 10.1007/978-981-15-5616-6_10 10.1119/1.1463744 10.1016/0076-6879(92)10010-B |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10115-024-02282-5 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0219-3116 |
| EndPage | 2061 |
| ExternalDocumentID | 10_1007_s10115_024_02282_5 |
| GroupedDBID | -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BEZIV BGNMA BPHCQ BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ KDC KOV LAS LLZTM M0C M4Y MA- MK~ ML~ NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 7SC 8FD AESKC ARAPS AZQEC JQ2 L7M L~C L~D S1Z |
| ID | FETCH-LOGICAL-c275t-a668eacedf9b504505b4edca62acbd0174fbf98f7490bfd3d09e064dc7fe10283 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001356437900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0219-1377 |
| IngestDate | Sat Nov 08 14:43:40 EST 2025 Sat Nov 29 02:29:28 EST 2025 Tue Nov 18 21:49:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c275t-a668eacedf9b504505b4edca62acbd0174fbf98f7490bfd3d09e064dc7fe10283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3165970249 |
| PQPubID | 43394 |
| PageCount | 43 |
| ParticipantIDs | proquest_journals_3165970249 crossref_citationtrail_10_1007_s10115_024_02282_5 crossref_primary_10_1007_s10115_024_02282_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Knowledge and information systems |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | 2282_CR104 J Biamonte (2282_CR12) 2017; 549 M Sharma (2282_CR93) 2021; 28 W Ding (2282_CR101) 2013; 24 J Li (2282_CR44) 2017 2282_CR70 K Dwivedi (2282_CR87) 2024 PI Bunyk (2282_CR122) 2014; 24 P Bugata (2282_CR49) 2020; 63 L Ingber (2282_CR61) 1993; 18 2282_CR78 S Hakemi (2282_CR19) 2024; 17 AW Harrow (2282_CR83) 2009; 103 M Fingerhuth (2282_CR89) 2018; 13 MHHFS Montazeri (2282_CR7) 2016; 20 2282_CR110 R Meiri (2282_CR8) 2006; 171 MW Huang (2282_CR4) 2021 YS Weinstein (2282_CR82) 2001; 86 M Ghosh (2282_CR113) 2021; 105 C Papalitsas (2282_CR21) 2021 R Bhagawati (2282_CR24) 2023; 15 2282_CR60 K Hussain (2282_CR65) 2019; 52 A Peruzzo (2282_CR84) 2014; 5 2282_CR64 L Gyongyosi (2282_CR67) 2019; 31 G Dueck (2282_CR63) 1993; 104 2282_CR68 2282_CR69 Z He (2282_CR125) 2018; 17 JT Pintas (2282_CR3) 2021; 54 D Zouache (2282_CR20) 2018; 115 R Zebari (2282_CR33) 2020; 1 CH Lin (2282_CR5) 2014; 41 W Liu (2282_CR17) 2020; 2020 2282_CR100 D de Werra (2282_CR62) 1989; 11 GS Paraoanu (2282_CR9) 2011; 13 BD Kwakye (2282_CR90) 2024; 248 R Nembrini (2282_CR16) 2021 NP de Leon (2282_CR75) 2021; 372 A Dabba (2282_CR111) 2021; 12 2282_CR6 D Wang (2282_CR115) 2020; 127 2282_CR51 2282_CR52 A Dabba (2282_CR114) 2023; 14 2282_CR57 AK Mandal (2282_CR23) 2021 2282_CR58 M Dorigo (2282_CR59) 2006; 1 2282_CR55 YX Li-Cong Song (2282_CR77) 2014; 61 2282_CR56 W Ding (2282_CR102) 2013; 50 HN Zohre Sadeghian (2282_CR92) 2023 H Liang (2282_CR36) 2007; 50 J Li (2282_CR25) 2017; 32 M Aramon (2282_CR73) 2019 M Dash (2282_CR37) 1997; 1 2282_CR2 2282_CR42 2282_CR43 2282_CR45 C Jin (2282_CR47) 2015; 61 R Ahmad (2282_CR105) 2023 S Otgonbaatar (2282_CR135) 2021; 14 N Hoque (2282_CR50) 2014; 41 F Barani (2282_CR107) 2017; 47 M Zaman (2282_CR120) 2022; 71 SL Wu (2282_CR13) 2021; 10 A Sharma (2282_CR31) 2015; 6 S Bengio (2282_CR26) 2000; 11 C Zhong (2282_CR116) 2023; 153 L Wang (2282_CR129) 2023; 98 BA Cipra (2282_CR119) 1987; 94 V Srikrishna (2282_CR103) 2015 TA Alhaj (2282_CR46) 2016; 11 P Drotár (2282_CR27) 2015; 66 Y Hamamoto (2282_CR39) 1990; 11 RJ Urbanowicz (2282_CR48) 2018; 85 2282_CR137 2282_CR136 OH Montiel Ross (2282_CR95) 2020; 8 H Abdi (2282_CR28) 2010; 2 H Yu (2282_CR71) 2018; 35 AA Abdulhussien (2282_CR97) 2023; 35 N Pirnay (2282_CR76) 2024; 10 Y Li (2282_CR127) 2024; 35 M Bennasar (2282_CR133) 2015; 42 FS Gharehchopogh (2282_CR96) 2023; 56 2282_CR22 MA Nielsen (2282_CR72) 2002; 70 2282_CR29 AO Balogun (2282_CR40) 2020 YX Wang (2282_CR30) 2013; 25 F Jiménez (2282_CR35) 2022; 10 D Zouache (2282_CR108) 2024; 83 AK Mandal (2282_CR109) 2023; 37 2282_CR128 HL Wei (2282_CR34) 2006; 29 RK Agrawal (2282_CR106) 2020; 89 D Peral-García (2282_CR86) 2024; 51 MC Cieslak (2282_CR32) 2020; 51 S Mücke (2282_CR15) 2023; 5 Q Wu (2282_CR98) 2019; 7 2282_CR10 K Rajwar (2282_CR66) 2023; 56 OO Akinola (2282_CR18) 2022; 34 P Agrawal (2282_CR91) 2021; 9 2282_CR99 E Cohen (2282_CR14) 2014; 12 2282_CR131 2282_CR130 L Wang (2282_CR1) 2014; 29 R Orús (2282_CR79) 2019; 4 2282_CR132 K Ikeda (2282_CR121) 2019; 9 2282_CR134 T Ibaraki (2282_CR41) 1976; 1 2282_CR117 Y Alexeev (2282_CR11) 2021; 2 NR Eluri (2282_CR112) 2022; 56 S Chakraborty (2282_CR126) 2020; 50 M Grimm (2282_CR118) 2021; 2 F Amini (2282_CR53) 2021; 166 S Hakemi (2282_CR94) 2022 2282_CR80 2282_CR81 AL Blum (2282_CR38) 1997; 97 2282_CR85 2282_CR88 M Sao (2282_CR74) 2019; 55 S Goswami (2282_CR54) 2018; 10 2282_CR124 2282_CR123 |
| References_xml | – year: 2021 ident: 2282_CR4 publication-title: Appl Sci doi: 10.3390/app11146574 – volume: 549 start-page: 195 issue: 7671 year: 2017 ident: 2282_CR12 publication-title: Nature doi: 10.1038/nature23474 – ident: 2282_CR123 – year: 2019 ident: 2282_CR73 publication-title: Front Phys doi: 10.3389/fphy.2019.00048 – volume: 5 start-page: 11 issue: 1 year: 2023 ident: 2282_CR15 publication-title: Quantum Mach Intell doi: 10.1007/s42484-023-00099-z – volume: 56 start-page: 13187 issue: 11 year: 2023 ident: 2282_CR66 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10470-y – volume: 8 start-page: 814 year: 2020 ident: 2282_CR95 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962155 – ident: 2282_CR81 doi: 10.1145/237814.237866 – volume: 10 start-page: 60421 year: 2022 ident: 2282_CR35 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3180773 – ident: 2282_CR55 doi: 10.1007/978-1-4419-1153-7_1167 – volume: 105 year: 2021 ident: 2282_CR113 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107221 – volume: 2020 start-page: 8216874 issue: 1 year: 2020 ident: 2282_CR17 publication-title: Complexity doi: 10.1155/2020/8216874 – ident: 2282_CR134 doi: 10.1109/ISCIS.2008.4717949 – volume: 10 start-page: 48 issue: 12 year: 2021 ident: 2282_CR13 publication-title: J Phys G Nuclear Particle Phys doi: 10.1088/1361-6471/ac1391 – volume: 127 start-page: 33 year: 2020 ident: 2282_CR115 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2020.08.010 – volume: 28 start-page: 1103 issue: 3 year: 2021 ident: 2282_CR93 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09412-6 – year: 2021 ident: 2282_CR16 publication-title: Entropy doi: 10.3390/e23080970 – volume: 1 start-page: 131 issue: 1 year: 1997 ident: 2282_CR37 publication-title: Intell Data Anal doi: 10.1016/S1088-467X(97)00008-5 – volume: 18 start-page: 29 issue: 11 year: 1993 ident: 2282_CR61 publication-title: Math Comput Model doi: 10.1016/0895-7177(93)90204-C – start-page: 113 volume-title: Multi-disciplinary trends in artificial intelligence year: 2015 ident: 2282_CR103 doi: 10.1007/978-3-319-26181-2_11 – ident: 2282_CR10 doi: 10.1007/978-3-540-71884-0_2 – year: 2024 ident: 2282_CR87 publication-title: Clust Comput doi: 10.1007/s10586-024-04362-1 – volume: 9 start-page: 12837 issue: 1 year: 2019 ident: 2282_CR121 publication-title: Sci Rep doi: 10.1038/s41598-019-49172-3 – volume: 11 start-page: 550 issue: 3 year: 2000 ident: 2282_CR26 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.846725 – ident: 2282_CR6 doi: 10.3390/sym12061046 – volume: 11 start-page: 453 issue: 7 year: 1990 ident: 2282_CR39 publication-title: Pattern Recogn Lett doi: 10.1016/0167-8655(90)90078-G – volume: 63 start-page: 1 year: 2020 ident: 2282_CR49 publication-title: Sci China Inform Sci doi: 10.1007/s11432-019-2633-y – ident: 2282_CR137 doi: 10.1109/ISVLSI51109.2021.00089 – volume: 12 start-page: 1430002 issue: 03 year: 2014 ident: 2282_CR14 publication-title: Int J Quantum Inform doi: 10.1142/S0219749914300022 – volume: 15 start-page: 4041 issue: 8 year: 2023 ident: 2282_CR24 publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01543-w – volume: 2 year: 2021 ident: 2282_CR11 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.017001 – volume: 20 start-page: 4 issue: 953–974 year: 2016 ident: 2282_CR7 publication-title: Intell Data Anal doi: 10.3233/IDA-160840 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 2282_CR59 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – ident: 2282_CR99 doi: 10.1109/GrC.2007.87 – volume: 56 start-page: 247 issue: 2 year: 2022 ident: 2282_CR112 publication-title: Data Technol Appl doi: 10.1108/DTA-05-2020-0109 – volume: 166 year: 2021 ident: 2282_CR53 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114072 – volume: 14 start-page: 3157 issue: 4 year: 2023 ident: 2282_CR114 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-021-03441-0 – year: 2023 ident: 2282_CR105 publication-title: Cancers doi: 10.3390/cancers15092507 – volume: 94 start-page: 937 issue: 10 year: 1987 ident: 2282_CR119 publication-title: Am Math Mon doi: 10.1080/00029890.1987.12000742 – volume: 61 start-page: 351 issue: 4 year: 2015 ident: 2282_CR47 publication-title: IETE J Res doi: 10.1080/03772063.2015.1021385 – volume: 1 start-page: 287 issue: 3 year: 1976 ident: 2282_CR41 publication-title: Math Oper Res doi: 10.1287/moor.1.3.287 – volume: 115 start-page: 26 year: 2018 ident: 2282_CR20 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2017.10.025 – volume: 71 start-page: 838 issue: 4 year: 2022 ident: 2282_CR120 publication-title: IEEE Trans Comput doi: 10.1109/TC.2021.3063618 – volume: 17 start-page: 154 issue: 7 year: 2018 ident: 2282_CR125 publication-title: Quantum Inf Process doi: 10.1007/s11128-018-1924-8 – ident: 2282_CR69 doi: 10.1145/3293883.3302578 – volume: 2 year: 2021 ident: 2282_CR118 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.010312 – volume: 12 start-page: 2731 issue: 2 year: 2021 ident: 2282_CR111 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02434-9 – volume: 9 start-page: 26766 year: 2021 ident: 2282_CR91 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056407 – volume: 85 start-page: 189 year: 2018 ident: 2282_CR48 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.07.014 – ident: 2282_CR131 – volume: 47 start-page: 304 issue: 2 year: 2017 ident: 2282_CR107 publication-title: Appl Intell doi: 10.1007/s10489-017-0894-3 – volume: 83 start-page: 22811 issue: 8 year: 2024 ident: 2282_CR108 publication-title: Multim Tools Appl doi: 10.1007/s11042-023-16411-9 – ident: 2282_CR51 – ident: 2282_CR64 doi: 10.1007/0-306-48056-5_11 – ident: 2282_CR104 doi: 10.1109/CEC.2018.8477705 – volume: 13 start-page: 1 issue: 12 year: 2018 ident: 2282_CR89 publication-title: PLoS ONE doi: 10.1371/journal.pone.0208561 – volume: 89 year: 2020 ident: 2282_CR106 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106092 – ident: 2282_CR2 doi: 10.1016/B978-1-55860-247-2.50037-1 – volume: 37 start-page: 2351001 issue: 02 year: 2023 ident: 2282_CR109 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001423510011 – volume: 51 year: 2024 ident: 2282_CR86 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2024.100619 – volume: 50 start-page: 421 issue: 4 year: 2007 ident: 2282_CR36 publication-title: Comput J doi: 10.1093/comjnl/bxm012 – volume: 55 start-page: 45 issue: 2 year: 2019 ident: 2282_CR74 publication-title: Fujitsu Sci Tech J doi: 10.48550/arXiv.2311.05196 – volume: 32 start-page: 9 issue: 2 year: 2017 ident: 2282_CR25 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2017.38 – volume: 10 start-page: eadj5170 issue: 11 year: 2024 ident: 2282_CR76 publication-title: Sci Adv doi: 10.1126/sciadv.adj5170 – volume: 372 start-page: eabb2823 issue: 6539 year: 2021 ident: 2282_CR75 publication-title: Science doi: 10.1126/science.abb2823 – volume: 248 year: 2024 ident: 2282_CR90 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.123362 – ident: 2282_CR22 doi: 10.1016/j.advengsoft.2022.103337 – ident: 2282_CR124 doi: 10.1109/QCE53715.2022.00117 – volume: 50 start-page: 1775 issue: 6 year: 2020 ident: 2282_CR126 publication-title: Appl Intell doi: 10.1007/s10489-019-01604-3 – volume: 171 start-page: 842 issue: 3 year: 2006 ident: 2282_CR8 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2004.09.010 – volume: 31 start-page: 51 year: 2019 ident: 2282_CR67 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2018.11.002 – volume: 4 year: 2019 ident: 2282_CR79 publication-title: Rev Phys doi: 10.1016/j.revip.2019.100028 – volume: 86 start-page: 1889 year: 2001 ident: 2282_CR82 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.1889 – volume: 7 start-page: 80588 year: 2019 ident: 2282_CR98 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919956 – volume: 1 start-page: 56 issue: 1 year: 2020 ident: 2282_CR33 publication-title: J Appl Sci Technol Trends doi: 10.38094/jastt1224 – volume: 52 start-page: 2191 issue: 4 year: 2019 ident: 2282_CR65 publication-title: Artif Intell Rev doi: 10.1007/s10462-017-9605-z – ident: 2282_CR128 doi: 10.1145/3603273.3631193 – volume: 29 start-page: 703 issue: 4 year: 2014 ident: 2282_CR1 publication-title: Optim Methods Software doi: 10.1080/10556788.2013.834900 – volume: 104 start-page: 86 issue: 1 year: 1993 ident: 2282_CR63 publication-title: J Comput Phys doi: 10.1006/jcph.1993.1010 – volume: 25 start-page: 1336 issue: 6 year: 2013 ident: 2282_CR30 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.51 – ident: 2282_CR68 doi: 10.1007/978-1-4842-6522-2_5 – volume: 98 issue: 11 year: 2023 ident: 2282_CR129 publication-title: Phys Scr doi: 10.1088/1402-4896/ad0184 – volume: 97 start-page: 245 issue: 1 year: 1997 ident: 2282_CR38 publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00063-5 – volume: 50 start-page: 1 year: 2013 ident: 2282_CR102 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.03.008 – volume: 34 start-page: 19751 issue: 22 year: 2022 ident: 2282_CR18 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07705-4 – ident: 2282_CR85 doi: 10.1007/978-3-030-54621-2_854-1 – volume: 35 issue: 11 year: 2018 ident: 2282_CR71 publication-title: Chin Phys Lett doi: 10.1088/0256-307X/35/11/110303 – volume: 35 start-page: 2364 issue: 2 year: 2024 ident: 2282_CR127 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3190042 – ident: 2282_CR43 doi: 10.1002/0471739383.ch1 – volume: 56 start-page: 5479 issue: 6 year: 2023 ident: 2282_CR96 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10280-8 – year: 2022 ident: 2282_CR94 publication-title: Evol Intel doi: 10.1007/s12065-022-00783-2 – ident: 2282_CR132 doi: 10.1109/ICCE-China.2017.7991050 – volume: 6 start-page: 443 issue: 3 year: 2015 ident: 2282_CR31 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-013-0226-9 – ident: 2282_CR110 doi: 10.1109/ICoICT55009.2022.9914872 – volume: 11 start-page: 1 issue: 11 year: 2016 ident: 2282_CR46 publication-title: PLoS ONE doi: 10.1371/journal.pone.0166017 – ident: 2282_CR130 doi: 10.1201/9781315372006-19 – volume: 13 start-page: 359 issue: 3 year: 2011 ident: 2282_CR9 publication-title: Phys Perspect doi: 10.1007/s00016-011-0057-6 – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 2282_CR28 publication-title: WIREs Comput Stat doi: 10.1002/wics.101 – volume: 24 start-page: 1 issue: 4 year: 2014 ident: 2282_CR122 publication-title: IEEE Trans Appl Supercond doi: 10.1109/TASC.2014.2318294 – year: 2017 ident: 2282_CR44 publication-title: ACM Comput Surv doi: 10.1145/3136625 – ident: 2282_CR80 doi: 10.1109/SFCS.1994.365700 – volume: 10 start-page: 305 issue: 3 year: 2018 ident: 2282_CR54 publication-title: Int J Adv Intell Paradigms doi: 10.1504/IJAIP.2018.090792 – ident: 2282_CR57 doi: 10.1109/ICNN.1995.488968 – volume: 42 start-page: 8520 issue: 22 year: 2015 ident: 2282_CR133 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.07.007 – volume: 66 start-page: 1 year: 2015 ident: 2282_CR27 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.08.010 – volume: 54 start-page: 6149 issue: 8 year: 2021 ident: 2282_CR3 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-09970-6 – volume: 103 year: 2009 ident: 2282_CR83 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.103.150502 – volume: 14 start-page: 7057 year: 2021 ident: 2282_CR135 publication-title: IEEE J Select Top Appl Earth Obser Remote Sensin. doi: 10.1109/JSTARS.2021.3095377 – volume: 17 start-page: 627 issue: 2 year: 2024 ident: 2282_CR19 publication-title: Evol Intell doi: 10.1007/s12065-022-00783-2 – volume: 5 start-page: 4213 issue: 1 year: 2014 ident: 2282_CR84 publication-title: Nat Commun doi: 10.1038/ncomms5213 – ident: 2282_CR136 doi: 10.1145/3477495.3531755 – year: 2023 ident: 2282_CR92 publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813X.2023.2183267 – volume: 35 start-page: 141 issue: 3 year: 2023 ident: 2282_CR97 publication-title: J King Saud Univ - Comput Inform Sci doi: 10.1016/j.jksuci.2023.02.005 – ident: 2282_CR56 doi: 10.1016/B978-0-12-813314-9.00010-4 – start-page: 129 volume-title: GeNeDis 2020 year: 2021 ident: 2282_CR21 doi: 10.1007/978-3-030-78775-2_15 – volume: 41 start-page: 6611 issue: 15 year: 2014 ident: 2282_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.033 – ident: 2282_CR45 doi: 10.1109/ISKE.2008.4731082 – volume: 41 start-page: 6371 issue: 14 year: 2014 ident: 2282_CR50 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.019 – volume: 51 year: 2020 ident: 2282_CR32 publication-title: Marine Genom doi: 10.1016/j.margen.2019.100723 – ident: 2282_CR52 doi: 10.1109/ICACA.2016.7887916 – ident: 2282_CR58 doi: 10.1007/978-3-319-93025-1_4 – ident: 2282_CR117 doi: 10.1109/CEC48606.2020.9185608 – ident: 2282_CR60 doi: 10.1109/NAFIPS.1996.534790 – volume: 153 year: 2023 ident: 2282_CR116 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106520 – ident: 2282_CR42 doi: 10.1109/ICPR.2002.1048275 – volume: 11 start-page: 131 issue: 3 year: 1989 ident: 2282_CR62 publication-title: Oper-Res-Spektrum doi: 10.1007/BF01720782 – volume: 24 start-page: 426 issue: 3 year: 2013 ident: 2282_CR101 publication-title: J Syst Eng Electron doi: 10.1109/JSEE.2013.00051 – start-page: 492 volume-title: Intelligent algorithms in software engineering year: 2020 ident: 2282_CR40 doi: 10.1007/978-3-030-51965-0_43 – ident: 2282_CR100 doi: 10.5772/10545 – volume: 29 start-page: 162 issue: 1 year: 2006 ident: 2282_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/tpami.2007.250607 – ident: 2282_CR88 doi: 10.23919/DATE.2019.8715261 – ident: 2282_CR78 doi: 10.1002/9780470181386.ch8 – ident: 2282_CR70 doi: 10.1007/978-3-031-02518-1_2 – volume: 61 start-page: 1290 issue: 16 year: 2014 ident: 2282_CR77 publication-title: J Mod Opt doi: 10.1080/09500340.2014.930194 – start-page: 133 volume-title: Data management, analytics and innovation year: 2021 ident: 2282_CR23 doi: 10.1007/978-981-15-5616-6_10 – volume: 70 start-page: 558 issue: 5 year: 2002 ident: 2282_CR72 publication-title: Am J Phys doi: 10.1119/1.1463744 – ident: 2282_CR29 doi: 10.1016/0076-6879(92)10010-B |
| SSID | ssj0017611 |
| Score | 2.410772 |
| SecondaryResourceType | review_article |
| Snippet | Feature subset selection is essential for identifying relevant and non-redundant features, which enhances classification accuracy and simplifies machine... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2019 |
| SubjectTerms | Algorithms Heuristic methods Machine learning Quantum computing |
| Title | Quantum computing and quantum-inspired techniques for feature subset selection: a review |
| URI | https://www.proquest.com/docview/3165970249 |
| Volume | 67 |
| WOSCitedRecordID | wos001356437900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0219-3116 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017611 issn: 0219-1377 databaseCode: RSV dateStart: 19990201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5K8eDF-sRHlT1404U0m2yy3kQsnorig97CvgYKGrVJ_P3ObtJKQYVek-wSZrIz3zCZ7yPkXEsQEINg0jcOk0QpphHWMoT2AjwVqstUEJvIJpN8OpX3PXL5ZwffD7khamGYS5jnasHSCQPuSLTDWo8vy5YB1uNBHg-PIPM0et2EzO9brGah1SAcMst4sN47bZOtDkHS69blO6Tnyl0yWKgz0O6w7pHpQ4NWa96oCbcwRVFVWvrZXmWz0vfYnaVLFteKIoCl4ALVJ60woriaVkEnB513RRVt51z2yfP49unmjnU6CszEWVozJUSO8dVZkDpFCBelOnHWKBEroy1aLgENMocskZEGy20kHSIVazJwAX8ckH75XrpDQrmONYecg1U8AZlqgyWQyKNUac5llB6R0cKuhelIxr3WxWvxQ4_sTVeg6YpgugLXXCzXfLQUG_8-PVy4q-iOW1XwkcDCyLMfHq-12QnZjL2eb_inbEj69bxxp2TDfNWzan4Wvq9voHLHBw |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+computing+and+quantum-inspired+techniques+for+feature+subset+selection%3A+a+review&rft.jtitle=Knowledge+and+information+systems&rft.au=Mandal%2C+Ashis+Kumar&rft.au=Chakraborty%2C+Basabi&rft.date=2025-03-01&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007%2Fs10115-024-02282-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10115_024_02282_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |