Partial Scene Text Retrieval

The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these tex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 47; číslo 3; s. 1548 - 1563
Hlavní autori: Wang, Hao, Liao, Minghui, Xie, Zhouyi, Liu, Wenyu, Bai, Xiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.03.2025
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these text-line instances unsolved due to a lack of patch annotations in the training data. To address this issue, we propose a network that can simultaneously retrieve both text-line instances and their partial patches. Our method embeds the two types of data (query text and scene text instances) into a shared feature space and measures their cross-modal similarities. To handle partial patches, our proposed approach adopts a Multiple Instance Learning (MIL) approach to learn their similarities with query text, without requiring extra annotations. However, constructing bags, which is a standard step of conventional MIL approaches, can introduce numerous noisy samples for training, and lower inference speed. To address this issue, we propose a Ranking MIL (RankMIL) approach to adaptively filter those noisy samples. Additionally, we present a Dynamic Partial Match Algorithm (DPMA) that can directly search for the target partial patch from a text-line instance during the inference stage, without requiring bags. This greatly improves the search efficiency and the performance of retrieving partial patches. We evaluate the proposed method on both English and Chinese datasets in two tasks: retrieving text-line instances and partial patches. For English text retrieval, our method outperforms state-of-the-art approaches by 8.04% mAP and 12.71% mAP on average, respectively, among three datasets for the two tasks. For Chinese text retrieval, our approach surpasses state-of-the-art approaches by 24.45% mAP and 38.06% mAP on average, respectively, among three datasets for the two tasks.
AbstractList The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these text-line instances unsolved due to a lack of patch annotations in the training data. To address this issue, we propose a network that can simultaneously retrieve both text-line instances and their partial patches. Our method embeds the two types of data (query text and scene text instances) into a shared feature space and measures their cross-modal similarities. To handle partial patches, our proposed approach adopts a Multiple Instance Learning (MIL) approach to learn their similarities with query text, without requiring extra annotations. However, constructing bags, which is a standard step of conventional MIL approaches, can introduce numerous noisy samples for training, and lower inference speed. To address this issue, we propose a Ranking MIL (RankMIL) approach to adaptively filter those noisy samples. Additionally, we present a Dynamic Partial Match Algorithm (DPMA) that can directly search for the target partial patch from a text-line instance during the inference stage, without requiring bags. This greatly improves the search efficiency and the performance of retrieving partial patches. We evaluate the proposed method on both English and Chinese datasets in two tasks: retrieving text-line instances and partial patches. For English text retrieval, our method outperforms state-of-the-art approaches by 8.04% mAP and 12.71% mAP on average, respectively, among three datasets for the two tasks. For Chinese text retrieval, our approach surpasses state-of-the-art approaches by 24.45% mAP and 38.06% mAP on average, respectively, among three datasets for the two tasks. The source code and dataset are available at https://github.com/lanfeng4659/PSTR.
The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these text-line instances unsolved due to a lack of patch annotations in the training data. To address this issue, we propose a network that can simultaneously retrieve both text-line instances and their partial patches. Our method embeds the two types of data (query text and scene text instances) into a shared feature space and measures their cross-modal similarities. To handle partial patches, our proposed approach adopts a Multiple Instance Learning (MIL) approach to learn their similarities with query text, without requiring extra annotations. However, constructing bags, which is a standard step of conventional MIL approaches, can introduce numerous noisy samples for training, and lower inference speed. To address this issue, we propose a Ranking MIL (RankMIL) approach to adaptively filter those noisy samples. Additionally, we present a Dynamic Partial Match Algorithm (DPMA) that can directly search for the target partial patch from a text-line instance during the inference stage, without requiring bags. This greatly improves the search efficiency and the performance of retrieving partial patches. We evaluate the proposed method on both English and Chinese datasets in two tasks: retrieving text-line instances and partial patches. For English text retrieval, our method outperforms state-of-the-art approaches by 8.04% mAP and 12.71% mAP on average, respectively, among three datasets for the two tasks. For Chinese text retrieval, our approach surpasses state-of-the-art approaches by 24.45% mAP and 38.06% mAP on average, respectively, among three datasets for the two tasks. The source code and dataset are available at https://github.com/lanfeng4659/PSTR.The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these text-line instances unsolved due to a lack of patch annotations in the training data. To address this issue, we propose a network that can simultaneously retrieve both text-line instances and their partial patches. Our method embeds the two types of data (query text and scene text instances) into a shared feature space and measures their cross-modal similarities. To handle partial patches, our proposed approach adopts a Multiple Instance Learning (MIL) approach to learn their similarities with query text, without requiring extra annotations. However, constructing bags, which is a standard step of conventional MIL approaches, can introduce numerous noisy samples for training, and lower inference speed. To address this issue, we propose a Ranking MIL (RankMIL) approach to adaptively filter those noisy samples. Additionally, we present a Dynamic Partial Match Algorithm (DPMA) that can directly search for the target partial patch from a text-line instance during the inference stage, without requiring bags. This greatly improves the search efficiency and the performance of retrieving partial patches. We evaluate the proposed method on both English and Chinese datasets in two tasks: retrieving text-line instances and partial patches. For English text retrieval, our method outperforms state-of-the-art approaches by 8.04% mAP and 12.71% mAP on average, respectively, among three datasets for the two tasks. For Chinese text retrieval, our approach surpasses state-of-the-art approaches by 24.45% mAP and 38.06% mAP on average, respectively, among three datasets for the two tasks. The source code and dataset are available at https://github.com/lanfeng4659/PSTR.
The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image gallery. However, existing methods can only handle text-line instances, leaving the problem of searching for partial patches within these text-line instances unsolved due to a lack of patch annotations in the training data. To address this issue, we propose a network that can simultaneously retrieve both text-line instances and their partial patches. Our method embeds the two types of data (query text and scene text instances) into a shared feature space and measures their cross-modal similarities. To handle partial patches, our proposed approach adopts a Multiple Instance Learning (MIL) approach to learn their similarities with query text, without requiring extra annotations. However, constructing bags, which is a standard step of conventional MIL approaches, can introduce numerous noisy samples for training, and lower inference speed. To address this issue, we propose a Ranking MIL (RankMIL) approach to adaptively filter those noisy samples. Additionally, we present a Dynamic Partial Match Algorithm (DPMA) that can directly search for the target partial patch from a text-line instance during the inference stage, without requiring bags. This greatly improves the search efficiency and the performance of retrieving partial patches. We evaluate the proposed method on both English and Chinese datasets in two tasks: retrieving text-line instances and partial patches. For English text retrieval, our method outperforms state-of-the-art approaches by 8.04% mAP and 12.71% mAP on average, respectively, among three datasets for the two tasks. For Chinese text retrieval, our approach surpasses state-of-the-art approaches by 24.45% mAP and 38.06% mAP on average, respectively, among three datasets for the two tasks.
Author Bai, Xiang
Xie, Zhouyi
Liao, Minghui
Wang, Hao
Liu, Wenyu
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-2227-075X
  surname: Wang
  fullname: Wang, Hao
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Minghui
  orcidid: 0000-0002-2583-4314
  surname: Liao
  fullname: Liao, Minghui
  organization: Huawei, Shenzhen, China
– sequence: 3
  givenname: Zhouyi
  orcidid: 0009-0006-3030-340X
  surname: Xie
  fullname: Xie, Zhouyi
  organization: Huawei, Shenzhen, China
– sequence: 4
  givenname: Wenyu
  orcidid: 0000-0002-4582-7488
  surname: Liu
  fullname: Liu, Wenyu
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Xiang
  orcidid: 0000-0002-3449-5940
  surname: Bai
  fullname: Bai, Xiang
  email: xbai@mail.hust.edu.cn
  organization: School of Software Engineering, Huazhong University of Science and Technology, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40030386$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1PAjEQQBuDkQ_9A4YYjl4Wp5222x4J8YMEI1E8N90yJGuWXdwuRv-9i6DxNJf3JjOvzzplVRJjlxzGnIO9WS4mj7OxACHHKK1WqT5hPcE1JFZY0WE94FokxgjTZf0Y3wC4VIBnrCsBENDoHhsufN3kvhi9BCpptKTPZvRMTZ3Thy_O2enaF5EujnPAXu9ul9OHZP50P5tO5kkQqWoSrTJJoCGg9pabEAKutfBcEfIMTSrRq4zbldQUhALhzcrbNFgDBCKzKQ7Y9WHvtq7edxQbt8ljoKLwJVW76JCnGtubwbTo1RHdZRtauW2db3z95X4_agFxAEJdxVjT-g_h4PbZ3E82t8_mjtlaaXiQciL6J6TKIEf8Bic4ZWU
CODEN ITPIDJ
Cites_doi 10.1109/TPAMI.2014.2339814
10.1007/978-3-030-01264-9_43
10.1109/TPAMI.2019.2937086
10.1109/CVPR.2016.89
10.1109/CVPR.2017.106
10.1007/978-3-030-58526-6_30
10.1109/ACCESS.2018.2878899
10.1609/aaai.v31i1.11196
10.1109/ICDAR.2015.7333961
10.1109/CVPR46437.2021.00870
10.1109/TIP.2018.2825107
10.1109/CVPR.2018.00619
10.1145/3539597.3570428
10.1109/ICCV.2013.378
10.1109/ICCV.2019.00972
10.1007/978-3-319-46484-8_4
10.1109/TIP.2016.2642781
10.1109/ICCV.2019.00480
10.1109/ICDAR.2019.00253
10.1109/TPAMI.2022.3155612
10.1162/neco.1997.9.8.1735
10.1109/ICDAR.2019.00254
10.1109/ICFHR.2016.0065
10.3115/v1/D14-1162
10.1162/coli.2009.35.4.35403
10.1109/TPAMI.2021.3107437
10.1109/icdar.2019.00077
10.1109/CVPR52688.2022.00455
10.1016/S0004-3702(96)00034-3
10.1109/JCDL.2017.7991581
10.1109/CVPR.2013.115
10.1007/s11263-015-0823-z
10.1109/ICDAR.2019.00252
10.1007/978-3-030-58621-8_41
10.1609/aaai.v34i07.6896
10.1109/ICFHR.2016.0060
10.1109/CVPR42600.2020.00983
10.1109/CVPR52688.2022.00458
10.1109/ICDAR.2019.00250
10.1109/TIP.2022.3206615
10.1609/aaai.v34i07.6812
10.1109/ICCV48922.2021.00986
10.1109/CVPR.2017.283
10.1109/CVPR.2016.254
10.1109/CVPR.2019.00956
10.1109/CVPR46437.2021.00453
10.1109/ICDAR.2017.157
10.1109/cvpr.2018.00527
10.1016/j.patcog.2019.02.002
10.1109/ICDAR.2017.88
10.1016/j.patcog.2020.107656
10.1109/CVPR.2015.7298668
10.1109/ICDAR.2013.108
10.1609/aaai.v34i07.6864
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TPAMI.2024.3496576
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1563
ExternalDocumentID 40030386
10_1109_TPAMI_2024_3496576
10758313
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science and Technology Major Project
  grantid: 2023YFF0905400
  funderid: 10.13039/501100018537
– fundername: National Science Fund for Distinguished Young Scholars of China
  grantid: 62225603
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c275t-65b4e060c36a918ccc3f62a15e31b38743a5b19d46ec2502a8da97c980e02b973
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414926400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Mon Sep 29 05:57:14 EDT 2025
Mon Jul 21 05:51:02 EDT 2025
Sat Nov 29 02:58:28 EST 2025
Wed Aug 27 01:53:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-65b4e060c36a918ccc3f62a15e31b38743a5b19d46ec2502a8da97c980e02b973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0006-3030-340X
0000-0002-3449-5940
0000-0002-4582-7488
0000-0002-2583-4314
0000-0003-2227-075X
PMID 40030386
PQID 3176340008
PQPubID 23479
PageCount 16
ParticipantIDs pubmed_primary_40030386
proquest_miscellaneous_3176340008
crossref_primary_10_1109_TPAMI_2024_3496576
ieee_primary_10758313
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
Levenshtein (ref18) 1966; 10
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Veit (ref47) 2016
ref51
ref50
ref46
ref45
ref48
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Mikolov (ref42)
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Viola (ref12)
Pathak (ref23)
References_xml – ident: ref9
  doi: 10.1109/TPAMI.2014.2339814
– ident: ref6
  doi: 10.1007/978-3-030-01264-9_43
– ident: ref35
  doi: 10.1109/TPAMI.2019.2937086
– ident: ref45
  doi: 10.1109/CVPR.2016.89
– ident: ref40
  doi: 10.1109/CVPR.2017.106
– ident: ref37
  doi: 10.1007/978-3-030-58526-6_30
– ident: ref4
  doi: 10.1109/ACCESS.2018.2878899
– ident: ref25
  doi: 10.1609/aaai.v31i1.11196
– ident: ref19
  doi: 10.1109/ICDAR.2015.7333961
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref23
  article-title: Fully convolutional multi-class multiple instance learning
– ident: ref28
  doi: 10.1109/CVPR46437.2021.00870
– ident: ref29
  doi: 10.1109/TIP.2018.2825107
– ident: ref30
  doi: 10.1109/CVPR.2018.00619
– ident: ref8
  doi: 10.1145/3539597.3570428
– ident: ref1
  doi: 10.1109/ICCV.2013.378
– ident: ref44
  doi: 10.1109/ICCV.2019.00972
– ident: ref26
  doi: 10.1007/978-3-319-46484-8_4
– ident: ref22
  doi: 10.1109/TIP.2016.2642781
– ident: ref34
  doi: 10.1109/ICCV.2019.00480
– ident: ref49
  doi: 10.1109/ICDAR.2019.00253
– ident: ref33
  doi: 10.1109/TPAMI.2022.3155612
– ident: ref43
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref54
  doi: 10.1109/ICDAR.2019.00254
– ident: ref16
  doi: 10.1109/ICFHR.2016.0065
– ident: ref41
  doi: 10.3115/v1/D14-1162
– ident: ref46
  doi: 10.1162/coli.2009.35.4.35403
– ident: ref55
  doi: 10.1109/TPAMI.2021.3107437
– ident: ref3
  doi: 10.1109/icdar.2019.00077
– ident: ref58
  doi: 10.1109/CVPR52688.2022.00455
– volume: 10
  start-page: 707
  issue: 8
  year: 1966
  ident: ref18
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
  publication-title: Sov. Phys. Doklady
– ident: ref20
  doi: 10.1016/S0004-3702(96)00034-3
– ident: ref2
  doi: 10.1109/JCDL.2017.7991581
– ident: ref21
  doi: 10.1109/CVPR.2013.115
– ident: ref10
  doi: 10.1007/s11263-015-0823-z
– ident: ref48
  doi: 10.1109/ICDAR.2019.00252
– ident: ref57
  doi: 10.1007/978-3-030-58621-8_41
– ident: ref39
  doi: 10.1609/aaai.v34i07.6896
– ident: ref15
  doi: 10.1109/ICFHR.2016.0060
– ident: ref38
  doi: 10.1109/CVPR42600.2020.00983
– ident: ref5
  doi: 10.1109/CVPR52688.2022.00458
– ident: ref50
  doi: 10.1109/ICDAR.2019.00250
– start-page: 1417
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Multiple instance boosting for object detection
– ident: ref56
  doi: 10.1109/TIP.2022.3206615
– ident: ref32
  doi: 10.1609/aaai.v34i07.6812
– ident: ref59
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref27
  doi: 10.1109/CVPR.2017.283
– ident: ref53
  doi: 10.1109/CVPR.2016.254
– ident: ref31
  doi: 10.1109/CVPR.2019.00956
– ident: ref13
  doi: 10.1109/CVPR46437.2021.00453
– ident: ref51
  doi: 10.1109/ICDAR.2017.157
– ident: ref11
  doi: 10.1109/cvpr.2018.00527
– ident: ref52
  doi: 10.1016/j.patcog.2019.02.002
– ident: ref17
  doi: 10.1109/ICDAR.2017.88
– ident: ref7
  doi: 10.1016/j.patcog.2020.107656
– ident: ref24
  doi: 10.1109/CVPR.2015.7298668
– ident: ref14
  doi: 10.1109/ICDAR.2013.108
– ident: ref36
  doi: 10.1609/aaai.v34i07.6864
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref42
  article-title: Efficient estimation of word representations in vector space
– year: 2016
  ident: ref47
  article-title: COCO-text: Dataset and benchmark for text detection and recognition in natural images
SSID ssj0014503
Score 2.474601
Snippet The task of partial scene text retrieval involves localizing and searching for text instances that are the same or similar to a given query text from an image...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1548
SubjectTerms Annotations
Classification algorithms
Cross-modal similarity learning
dynamic programming algorithm
Extraterrestrial measurements
Feature extraction
Heuristic algorithms
multiple instance learning (MIL)
Noise measurement
Prediction algorithms
Proposals
scene text retrieval
Similarity learning
Training
Title Partial Scene Text Retrieval
URI https://ieeexplore.ieee.org/document/10758313
https://www.ncbi.nlm.nih.gov/pubmed/40030386
https://www.proquest.com/docview/3176340008
Volume 47
WOSCitedRecordID wos001414926400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BxQADhVIgUKogsaGUJLZje6wQFQxUFRSpW-TYjsTSon7w-zk7SdWlA1uGOIpe7uNd7LsH8FAmUlquRJQVkkSUExUVzJBIlrzE9KxMYoUXm-DjsZjN5KRuVve9MNZaf_jMDtyl38s3C71xv8rQw5HdEqdRe8g5r5q1tlsGlHkZZKQw6OJYRzQdMrF8mk6G729YC6Z04OejuwEjO1nIy6rsZ5g-04za_3zHMzitKWU4rGzgHA7svAPtRq4hrL23Ayc7swcvoDdxRoPrPjWGu3CKQTr88PJaaHtd-Bq9TJ9fo1oqIdIpZ-soYwW1cRZrkimZCK01KbNUJcySpCACaYJiRSINzaxG0pMqYZTkWorYxmkhObmE1nwxt9cQJlyZuGRSUCOo1FYYLL5tKhlDaitiE8BjA13-U03EyH0lEcvcA507oPMa6AC6DqOdOyt4Arhv4M7RoN0uhZrbxWaVI6HJCHXcJICr6jtsV1MXk4jIbvY89RaOU6fP68-I9aC1Xm7sHRzp3_X3atlHq5mJvreaP3OTuwQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4xaKIeRBF1ijoTb2a4re3WHomRQARCFBNuS9d2iRcw_PDv97UbhIsHbzusy_Lt_fje2vc-gMciEsKkkgdJLkhAUyKDnGkSiCItMD1LHRnuxCbS0YhPp2JcNau7XhhjjDt8Ztr20u3l67la219l6OHIbonVqN1nlMZR2a613TSgzAkhI4lBJ8dKYtMjE4rnybgz7GM1GNO2m5BuR4zs5CEnrPI3x3S5plv_51uewklFKv1OaQVnsGdmDahvBBv8yn8bcLwzffAcWmNrNrjuQ2HA8ycYpv13J7CF1teEz-7r5KUXVGIJgYpTtgoSllMTJqEiiRQRV0qRIollxAyJcsKRKEiWR0LTxCikPbHkWopUCR6aMM5FSi6gNpvPzBX4USp1WDDBqeZUKMM1lt8mFowhueWh9uBpA132Xc7EyFwtEYrMAZ1ZoLMKaA-aFqOdO0t4PHjYwJ2hSdt9Cjkz8_UyQ0qTEGrZiQeX5XfYrqY2KhGeXP_x1Hs47E2Gg2zQH73dwFFs1XrdibEW1FaLtbmFA_Wz-lou7pzt_AL1A71j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+Scene+Text+Retrieval&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wang%2C+Hao&rft.au=Liao%2C+Minghui&rft.au=Xie%2C+Zhouyi&rft.au=Liu%2C+Wenyu&rft.date=2025-03-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=47&rft.issue=3&rft.spage=1548&rft.epage=1563&rft_id=info:doi/10.1109%2FTPAMI.2024.3496576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2024_3496576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon