Neural network-based adaptive reinforcement learning for optimized backstepping tracking control of nonlinear systems with input delay

In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system under consideration contains input delay and has unmeasurable and restricted states within predefined compact sets. First, neural networks (NNs)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 2; s. 129
Hlavní autori: Zhu, Boyan, Karimi, Hamid Reza, Zhang, Liang, Zhao, Xudong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer Nature B.V 01.01.2025
Predmet:
ISSN:0924-669X, 1573-7497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system under consideration contains input delay and has unmeasurable and restricted states within predefined compact sets. First, neural networks (NNs) are employed to approximate the unknown nonlinear dynamics, and an adaptive neural network (NN) state observer is constructed to compensate for the absence of state information. Additionally, by utilizing an auxiliary system compensation method alongside the backstepping technique, the impact of input delay is eliminated, and the generation of intermediate variables is prevented. Second, tan-type barrier optimal cost functions are established for each subsystem within the backstepping method to prevent the state variables from exceeding preselected sets. Moreover, by establishing both actor and critic NNs to execute a reinforcement learning algorithm, the optimal controller and optimal performance index function are evaluated, while relaxing the persistence of excitation condition. According to the Lyapunov stability theorem, it is demonstrated that all signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the output signal accurately tracks a reference trajectory with the desired precision. Finally, a practical simulation example is provided to verify the effectiveness of the proposed control strategy, demonstrating its potential for real-world implementation.
AbstractList In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system under consideration contains input delay and has unmeasurable and restricted states within predefined compact sets. First, neural networks (NNs) are employed to approximate the unknown nonlinear dynamics, and an adaptive neural network (NN) state observer is constructed to compensate for the absence of state information. Additionally, by utilizing an auxiliary system compensation method alongside the backstepping technique, the impact of input delay is eliminated, and the generation of intermediate variables is prevented. Second, tan-type barrier optimal cost functions are established for each subsystem within the backstepping method to prevent the state variables from exceeding preselected sets. Moreover, by establishing both actor and critic NNs to execute a reinforcement learning algorithm, the optimal controller and optimal performance index function are evaluated, while relaxing the persistence of excitation condition. According to the Lyapunov stability theorem, it is demonstrated that all signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the output signal accurately tracks a reference trajectory with the desired precision. Finally, a practical simulation example is provided to verify the effectiveness of the proposed control strategy, demonstrating its potential for real-world implementation.
ArticleNumber 129
Author Karimi, Hamid Reza
Zhang, Liang
Zhao, Xudong
Zhu, Boyan
Author_xml – sequence: 1
  givenname: Boyan
  surname: Zhu
  fullname: Zhu, Boyan
– sequence: 2
  givenname: Hamid Reza
  surname: Karimi
  fullname: Karimi, Hamid Reza
– sequence: 3
  givenname: Liang
  surname: Zhang
  fullname: Zhang, Liang
– sequence: 4
  givenname: Xudong
  surname: Zhao
  fullname: Zhao, Xudong
BookMark eNp9kM9u3CAQxlGVSt2kfYGekHp2OhgM9rGK8qdSlFxaqTc0ZsctiRccYJtsH6DPHTabUw89MXzz-wbmO2ZHIQZi7KOAUwFgPmcBqh8aaFUD3SDb5ukNW4nOyMaowRyxFQy1pfXw4x07zvkOAKQEsWJ_b2ibcOaBymNM982ImdYc17gU_5t4Ih-mmBxtKBQ-E6bgw09eJR4rsfF_Kj2iu8-FlmXfKqne9oWLoaQ48zjx-tnZh2rmeVfBTeaPvvziPizbwtc04-49ezvhnOnD63nCvl-cfzu7aq5vL7-efbluXGu60nRSdQP2REjGOdBi0hOs-25EUtAbNw2IqtV9q6qs5diPRuqhU6N2JCcU8oR9OsxdUnzYUi72Lm5TqE9aKZQE04OWleoPlEsx50STdb5g8fuN0M9WgN2nbg-p25q6fUndPlVr-491SX6Dafc_0zML2owB
CitedBy_id crossref_primary_10_1108_RIA_10_2024_0235
crossref_primary_10_1016_j_jorganchem_2025_123572
crossref_primary_10_1007_s10586_025_05202_6
crossref_primary_10_1016_j_asej_2025_103414
crossref_primary_10_1080_03081079_2025_2540300
crossref_primary_10_1615_HeatTransRes_2025057987
crossref_primary_10_1038_s41598_025_02568_w
crossref_primary_10_1016_j_fluid_2025_114423
crossref_primary_10_1007_s11071_025_11785_x
crossref_primary_10_1007_s10586_024_05021_1
crossref_primary_10_1038_s41598_025_95969_w
crossref_primary_10_1186_s40537_025_01073_1
crossref_primary_10_1038_s41598_025_92564_x
crossref_primary_10_1016_j_cnsns_2025_108804
crossref_primary_10_1016_j_jcou_2025_103052
crossref_primary_10_3390_s25051527
crossref_primary_10_1016_j_rineng_2025_105389
crossref_primary_10_1177_01423312251361970
crossref_primary_10_1016_j_engappai_2025_110900
crossref_primary_10_1080_12269328_2025_2505174
crossref_primary_10_1016_j_jprocont_2025_103411
crossref_primary_10_1016_j_asej_2025_103378
crossref_primary_10_1007_s10278_025_01435_4
Cites_doi 10.1109/TNNLS.2021.3105548
10.1109/TFUZZ.2022.3227993
10.1177/01423312231169561
10.1002/asjc.2465
10.1109/TCYB.2019.2921057
10.53941/ijndi.2024.100010
10.1109/TII.2019.2894282
10.3390/fractalfract7120862
10.1002/acs.3570
10.1080/00207721.2023.2272217
10.1007/s11071-024-10234-5
10.1016/j.fss.2024.109140
10.1016/j.fss.2023.108735
10.1109/JSYST.2023.3280192
10.1109/TFUZZ.2024.3519720
10.1109/TFUZZ.2024.3357083
10.1109/TCYB.2021.3069587
10.1016/j.ins.2022.11.109
10.1002/oca.2916
10.1080/00207721.2024.2328780
10.1177/01423312221110437
10.1109/TFUZZ.2023.3235431
10.1109/JSYST.2024.3433023
10.1109/TFUZZ.2023.3315458
10.1109/TSMC.2023.3257170
10.1007/s12555-022-0223-4
10.1016/j.neunet.2023.05.001
10.1002/oca.3160
10.1109/JSYST.2024.3350771
10.1016/j.cnsns.2024.108144
10.1109/TSMC.2021.3112688
10.1016/j.isatra.2022.07.027
10.1080/00207721.2024.2344059
10.1109/TNNLS.2022.3186528
10.1007/s11071-023-08871-3
10.1109/TFUZZ.2024.3351993
10.1002/rnc.5747
10.1109/TSMC.2023.3320653
10.1109/TFUZZ.2023.3273566
10.1016/j.neucom.2024.128176
10.1109/TNNLS.2018.2803726
10.1109/TNNLS.2022.3214681
10.1109/TCYB.2018.2799683
10.1016/j.ins.2024.121350
10.1155/2022/1902166
10.1016/j.ins.2024.120756
10.1109/TFUZZ.2023.3294928
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-024-05932-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_024_05932_x
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77I
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
7SC
8FD
AESKC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c275t-53459a8eeae7cc061f6f0d85bae4087cf9aa426824f0d63b8b736954b6ce3fa13
IEDL.DBID RSV
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001374810800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 15:02:08 EST 2025
Sat Nov 29 05:33:43 EST 2025
Tue Nov 18 22:20:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c275t-53459a8eeae7cc061f6f0d85bae4087cf9aa426824f0d63b8b736954b6ce3fa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3143078063
PQPubID 326365
ParticipantIDs proquest_journals_3143078063
crossref_citationtrail_10_1007_s10489_024_05932_x
crossref_primary_10_1007_s10489_024_05932_x
PublicationCentury 2000
PublicationDate 2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References H Zhao (5932_CR34) 2024; 474
JG Zhao (5932_CR7) 2023; 21
HQ Wang (5932_CR22) 2024; 32
X Yuan (5932_CR1) 2023; 31
XY Zheng (5932_CR42) 2023; 46
L Tang (5932_CR11) 2024; 45
GX Wen (5932_CR10) 2018; 29
YX Zhang (5932_CR23) 2022; PP
5932_CR38
5932_CR39
JG Zhao (5932_CR6) 2022; 43
ZS Huang (5932_CR47) 2023; 621
5932_CR33
5932_CR14
5932_CR37
HY Li (5932_CR21) 2023; 55
YL Li (5932_CR12) 2022; 52
H Zhao (5932_CR31) 2023; 164
DD Li (5932_CR27) 2024; 32
GX Wen (5932_CR9) 2019; 15
SW Liu (5932_CR18) 2023; 134
XN Xia (5932_CR19) 2021; 31
ZR Gao (5932_CR5) 2020; 24
JC Zhai (5932_CR20) 2023; 45
JX Zhang (5932_CR36) 2024; 32
N Maleki (5932_CR16) 2022; 2022
H Zhao (5932_CR30) 2023; 31
DP Li (5932_CR48) 2019; 49
DD Li (5932_CR29) 2024; 54
WW Bai (5932_CR46) 2020; 50
DD Li (5932_CR28) 2023; 31
K Sun (5932_CR4) 2023; 7
P Wan (5932_CR2) 2023; 53
5932_CR41
AK Jain (5932_CR43) 2023; 37
XJ Wu (5932_CR17) 2024; 55
L Chen (5932_CR32) 2022; PP
SH Liu (5932_CR35) 2024; 18
GX Wen (5932_CR13) 2021; PP
5932_CR44
5932_CR45
YB Li (5932_CR3) 2024; 137
JF Wang (5932_CR24) 2023; 111
5932_CR25
5932_CR26
5932_CR8
GX Wen (5932_CR15) 2022; 52
5932_CR40
References_xml – volume: PP
  start-page: 1524
  issue: 3
  year: 2021
  ident: 5932_CR13
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3105548
– volume: 31
  start-page: 2509
  issue: 8
  year: 2023
  ident: 5932_CR28
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2022.3227993
– volume: 46
  start-page: 104
  issue: 1
  year: 2023
  ident: 5932_CR42
  publication-title: Trans Inst Meas Control
  doi: 10.1177/01423312231169561
– volume: 24
  start-page: 309
  issue: 1
  year: 2020
  ident: 5932_CR5
  publication-title: Asian J. Control.
  doi: 10.1002/asjc.2465
– volume: 50
  start-page: 3433
  issue: 8
  year: 2020
  ident: 5932_CR46
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2921057
– ident: 5932_CR8
  doi: 10.53941/ijndi.2024.100010
– volume: 15
  start-page: 4969
  issue: 9
  year: 2019
  ident: 5932_CR9
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2894282
– volume: 7
  start-page: 862
  issue: 12
  year: 2023
  ident: 5932_CR4
  publication-title: Fractal and Fractional.
  doi: 10.3390/fractalfract7120862
– ident: 5932_CR25
– volume: 37
  start-page: 1193
  issue: 5
  year: 2023
  ident: 5932_CR43
  publication-title: Int. J. Adapt. Control.
  doi: 10.1002/acs.3570
– volume: 55
  start-page: 332
  issue: 2
  year: 2023
  ident: 5932_CR21
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2023.2272217
– ident: 5932_CR44
  doi: 10.1007/s11071-024-10234-5
– ident: 5932_CR40
  doi: 10.1016/j.fss.2024.109140
– volume: 474
  year: 2024
  ident: 5932_CR34
  publication-title: Fuzzy Set Syst
  doi: 10.1016/j.fss.2023.108735
– ident: 5932_CR14
  doi: 10.1109/JSYST.2023.3280192
– ident: 5932_CR26
  doi: 10.1109/TFUZZ.2024.3519720
– ident: 5932_CR39
  doi: 10.1109/TFUZZ.2024.3357083
– volume: 52
  start-page: 10542
  issue: 10
  year: 2022
  ident: 5932_CR12
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3069587
– volume: 621
  start-page: 407
  year: 2023
  ident: 5932_CR47
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2022.11.109
– volume: 43
  start-page: 1623
  issue: 6
  year: 2022
  ident: 5932_CR6
  publication-title: Optim. Contr. Appl. Met.
  doi: 10.1002/oca.2916
– volume: 55
  start-page: 2008
  issue: 10
  year: 2024
  ident: 5932_CR17
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2024.2328780
– volume: 45
  start-page: 374
  issue: 2
  year: 2023
  ident: 5932_CR20
  publication-title: Trans Inst Meas Control
  doi: 10.1177/01423312221110437
– volume: 31
  start-page: 2734
  issue: 8
  year: 2023
  ident: 5932_CR1
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2023.3235431
– ident: 5932_CR38
  doi: 10.1109/JSYST.2024.3433023
– volume: 32
  start-page: 958
  issue: 3
  year: 2024
  ident: 5932_CR22
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2023.3315458
– volume: 53
  start-page: 5116
  issue: 8
  year: 2023
  ident: 5932_CR2
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2023.3257170
– volume: 21
  start-page: 1349
  issue: 4
  year: 2023
  ident: 5932_CR7
  publication-title: Int J Control Autom Syst
  doi: 10.1007/s12555-022-0223-4
– volume: 164
  start-page: 508
  year: 2023
  ident: 5932_CR31
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2023.05.001
– volume: 45
  start-page: 2364
  issue: 5
  year: 2024
  ident: 5932_CR11
  publication-title: Optim Contr Appl Met
  doi: 10.1002/oca.3160
– volume: 18
  start-page: 758
  issue: 1
  year: 2024
  ident: 5932_CR35
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2024.3350771
– volume: 137
  year: 2024
  ident: 5932_CR3
  publication-title: Commun. Nonlinear Sci.
  doi: 10.1016/j.cnsns.2024.108144
– volume: 52
  start-page: 5004
  issue: 8
  year: 2022
  ident: 5932_CR15
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2021.3112688
– volume: 134
  start-page: 122
  year: 2023
  ident: 5932_CR18
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2022.07.027
– ident: 5932_CR45
  doi: 10.1080/00207721.2024.2344059
– volume: PP
  start-page: 2066
  issue: 2
  year: 2022
  ident: 5932_CR23
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3186528
– volume: 111
  start-page: 19133
  issue: 20
  year: 2023
  ident: 5932_CR24
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-023-08871-3
– volume: 32
  start-page: 2390
  issue: 4
  year: 2024
  ident: 5932_CR36
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2024.3351993
– volume: 31
  start-page: 9074
  issue: 18
  year: 2021
  ident: 5932_CR19
  publication-title: Int. J. Robust Nonlin.
  doi: 10.1002/rnc.5747
– volume: 54
  start-page: 1059
  issue: 2
  year: 2024
  ident: 5932_CR29
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2023.3320653
– volume: 31
  start-page: 4010
  issue: 11
  year: 2023
  ident: 5932_CR30
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2023.3273566
– ident: 5932_CR37
  doi: 10.1016/j.neucom.2024.128176
– volume: 29
  start-page: 3850
  issue: 8
  year: 2018
  ident: 5932_CR10
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2803726
– volume: PP
  start-page: 7520
  issue: 6
  year: 2022
  ident: 5932_CR32
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3214681
– volume: 49
  start-page: 1249
  issue: 4
  year: 2019
  ident: 5932_CR48
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2799683
– ident: 5932_CR41
  doi: 10.1016/j.ins.2024.121350
– volume: 2022
  start-page: 1902166
  issue: 1
  year: 2022
  ident: 5932_CR16
  publication-title: Sfi. S. Sci. C.
  doi: 10.1155/2022/1902166
– ident: 5932_CR33
  doi: 10.1016/j.ins.2024.120756
– volume: 32
  start-page: 214
  issue: 1
  year: 2024
  ident: 5932_CR27
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2023.3294928
SSID ssj0003301
Score 2.524041
Snippet In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 129
SubjectTerms Adaptive control
Adaptive systems
Algorithms
Closed loops
Cost function
Delay
Dynamical systems
Feedback control
Machine learning
Neural networks
Nonlinear control
Nonlinear dynamics
Nonlinear systems
Performance indices
State observers
Subsystems
Tracking control
Title Neural network-based adaptive reinforcement learning for optimized backstepping tracking control of nonlinear systems with input delay
URI https://www.proquest.com/docview/3143078063
Volume 55
WOSCitedRecordID wos001374810800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5jePDi_InTKTl400CbtEl7FHF4kCH4g91KmqZjoNvoqqh_gH-376XZZKDCbm14TUNek_clzfs-Qs4khLhAWA1DXGqGHFMsN2nBLJcWAJ0MS-0ShW_VYJAMh-ldi1z8-Qcfk9wiPNbDI4byc5whYgxlk6x1_7ScdmFh7uTxYEHBpEyHPkPm9ypWo9DqJOwiS7-zXpu2yZZHkPSycfkOadnJLuks1BmoH6x75At5N8Bw0hz0ZhivCqoLPcMZjlbWcaYatz1IvXjEiEIRnYLFy_gTrHPMwK8tcjiMaF3BHV744-10WtJJw7ShK9pQQs8pbuzS8QQaQ5GA8mOfPPavH65umFddYIaruGaxiOJUJ9Zqq4yBcF_KMiiSONc2ChJlylRrCOsJj6BYijzJlZBpHOXSWFHqUByQNrzcHhLKCwWOsVwpaSMTCh3oMge8YGQBaDk2XRIuvJAZT0mOyhjP2Q-ZMnZ0Bh2duY7O3rvkfPnMrCHk-Ne6t3Bu5gfnPBOAEQEZATg7WquyY7LJUf3XbcD0SLuuXu0J2TBv9Xhenbqv8RtLPdqt
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network-based+adaptive+reinforcement+learning+for+optimized+backstepping+tracking+control+of+nonlinear+systems+with+input+delay&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhu%2C+Boyan&rft.au=Karimi%2C+Hamid+Reza&rft.au=Zhang%2C+Liang&rft.au=Zhao%2C+Xudong&rft.date=2025-01-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=2&rft_id=info:doi/10.1007%2Fs10489-024-05932-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_024_05932_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon