Neural network-based adaptive reinforcement learning for optimized backstepping tracking control of nonlinear systems with input delay
In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system under consideration contains input delay and has unmeasurable and restricted states within predefined compact sets. First, neural networks (NNs)...
Gespeichert in:
| Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Jg. 55; H. 2; S. 129 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer Nature B.V
01.01.2025
|
| Schlagworte: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system under consideration contains input delay and has unmeasurable and restricted states within predefined compact sets. First, neural networks (NNs) are employed to approximate the unknown nonlinear dynamics, and an adaptive neural network (NN) state observer is constructed to compensate for the absence of state information. Additionally, by utilizing an auxiliary system compensation method alongside the backstepping technique, the impact of input delay is eliminated, and the generation of intermediate variables is prevented. Second, tan-type barrier optimal cost functions are established for each subsystem within the backstepping method to prevent the state variables from exceeding preselected sets. Moreover, by establishing both actor and critic NNs to execute a reinforcement learning algorithm, the optimal controller and optimal performance index function are evaluated, while relaxing the persistence of excitation condition. According to the Lyapunov stability theorem, it is demonstrated that all signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the output signal accurately tracks a reference trajectory with the desired precision. Finally, a practical simulation example is provided to verify the effectiveness of the proposed control strategy, demonstrating its potential for real-world implementation. |
|---|---|
| AbstractList | In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system under consideration contains input delay and has unmeasurable and restricted states within predefined compact sets. First, neural networks (NNs) are employed to approximate the unknown nonlinear dynamics, and an adaptive neural network (NN) state observer is constructed to compensate for the absence of state information. Additionally, by utilizing an auxiliary system compensation method alongside the backstepping technique, the impact of input delay is eliminated, and the generation of intermediate variables is prevented. Second, tan-type barrier optimal cost functions are established for each subsystem within the backstepping method to prevent the state variables from exceeding preselected sets. Moreover, by establishing both actor and critic NNs to execute a reinforcement learning algorithm, the optimal controller and optimal performance index function are evaluated, while relaxing the persistence of excitation condition. According to the Lyapunov stability theorem, it is demonstrated that all signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB), and the output signal accurately tracks a reference trajectory with the desired precision. Finally, a practical simulation example is provided to verify the effectiveness of the proposed control strategy, demonstrating its potential for real-world implementation. |
| ArticleNumber | 129 |
| Author | Karimi, Hamid Reza Zhang, Liang Zhao, Xudong Zhu, Boyan |
| Author_xml | – sequence: 1 givenname: Boyan surname: Zhu fullname: Zhu, Boyan – sequence: 2 givenname: Hamid Reza surname: Karimi fullname: Karimi, Hamid Reza – sequence: 3 givenname: Liang surname: Zhang fullname: Zhang, Liang – sequence: 4 givenname: Xudong surname: Zhao fullname: Zhao, Xudong |
| BookMark | eNp9kM9u3CAQxlGVSt2kfYGekHp2OhgM9rGK8qdSlFxaqTc0ZsctiRccYJtsH6DPHTabUw89MXzz-wbmO2ZHIQZi7KOAUwFgPmcBqh8aaFUD3SDb5ukNW4nOyMaowRyxFQy1pfXw4x07zvkOAKQEsWJ_b2ibcOaBymNM982ImdYc17gU_5t4Ih-mmBxtKBQ-E6bgw09eJR4rsfF_Kj2iu8-FlmXfKqne9oWLoaQ48zjx-tnZh2rmeVfBTeaPvvziPizbwtc04-49ezvhnOnD63nCvl-cfzu7aq5vL7-efbluXGu60nRSdQP2REjGOdBi0hOs-25EUtAbNw2IqtV9q6qs5diPRuqhU6N2JCcU8oR9OsxdUnzYUi72Lm5TqE9aKZQE04OWleoPlEsx50STdb5g8fuN0M9WgN2nbg-p25q6fUndPlVr-491SX6Dafc_0zML2owB |
| CitedBy_id | crossref_primary_10_1108_RIA_10_2024_0235 crossref_primary_10_1016_j_jorganchem_2025_123572 crossref_primary_10_1007_s10586_025_05202_6 crossref_primary_10_1016_j_asej_2025_103414 crossref_primary_10_1080_03081079_2025_2540300 crossref_primary_10_1615_HeatTransRes_2025057987 crossref_primary_10_1038_s41598_025_02568_w crossref_primary_10_1016_j_fluid_2025_114423 crossref_primary_10_1007_s11071_025_11785_x crossref_primary_10_1007_s10586_024_05021_1 crossref_primary_10_1038_s41598_025_95969_w crossref_primary_10_1186_s40537_025_01073_1 crossref_primary_10_1038_s41598_025_92564_x crossref_primary_10_1016_j_cnsns_2025_108804 crossref_primary_10_1016_j_jcou_2025_103052 crossref_primary_10_3390_s25051527 crossref_primary_10_1016_j_rineng_2025_105389 crossref_primary_10_1177_01423312251361970 crossref_primary_10_1016_j_engappai_2025_110900 crossref_primary_10_1080_12269328_2025_2505174 crossref_primary_10_1016_j_jprocont_2025_103411 crossref_primary_10_1016_j_asej_2025_103378 crossref_primary_10_1007_s10278_025_01435_4 |
| Cites_doi | 10.1109/TNNLS.2021.3105548 10.1109/TFUZZ.2022.3227993 10.1177/01423312231169561 10.1002/asjc.2465 10.1109/TCYB.2019.2921057 10.53941/ijndi.2024.100010 10.1109/TII.2019.2894282 10.3390/fractalfract7120862 10.1002/acs.3570 10.1080/00207721.2023.2272217 10.1007/s11071-024-10234-5 10.1016/j.fss.2024.109140 10.1016/j.fss.2023.108735 10.1109/JSYST.2023.3280192 10.1109/TFUZZ.2024.3519720 10.1109/TFUZZ.2024.3357083 10.1109/TCYB.2021.3069587 10.1016/j.ins.2022.11.109 10.1002/oca.2916 10.1080/00207721.2024.2328780 10.1177/01423312221110437 10.1109/TFUZZ.2023.3235431 10.1109/JSYST.2024.3433023 10.1109/TFUZZ.2023.3315458 10.1109/TSMC.2023.3257170 10.1007/s12555-022-0223-4 10.1016/j.neunet.2023.05.001 10.1002/oca.3160 10.1109/JSYST.2024.3350771 10.1016/j.cnsns.2024.108144 10.1109/TSMC.2021.3112688 10.1016/j.isatra.2022.07.027 10.1080/00207721.2024.2344059 10.1109/TNNLS.2022.3186528 10.1007/s11071-023-08871-3 10.1109/TFUZZ.2024.3351993 10.1002/rnc.5747 10.1109/TSMC.2023.3320653 10.1109/TFUZZ.2023.3273566 10.1016/j.neucom.2024.128176 10.1109/TNNLS.2018.2803726 10.1109/TNNLS.2022.3214681 10.1109/TCYB.2018.2799683 10.1016/j.ins.2024.121350 10.1155/2022/1902166 10.1016/j.ins.2024.120756 10.1109/TFUZZ.2023.3294928 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Jan 2025 |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Jan 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-024-05932-x |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_024_05932_x |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77I 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~A9 ~EX 7SC 8FD AESKC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c275t-53459a8eeae7cc061f6f0d85bae4087cf9aa426824f0d63b8b736954b6ce3fa13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001374810800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 15:02:08 EST 2025 Sat Nov 29 05:33:43 EST 2025 Tue Nov 18 22:20:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c275t-53459a8eeae7cc061f6f0d85bae4087cf9aa426824f0d63b8b736954b6ce3fa13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3143078063 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3143078063 crossref_citationtrail_10_1007_s10489_024_05932_x crossref_primary_10_1007_s10489_024_05932_x |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | H Zhao (5932_CR34) 2024; 474 JG Zhao (5932_CR7) 2023; 21 HQ Wang (5932_CR22) 2024; 32 X Yuan (5932_CR1) 2023; 31 XY Zheng (5932_CR42) 2023; 46 L Tang (5932_CR11) 2024; 45 GX Wen (5932_CR10) 2018; 29 YX Zhang (5932_CR23) 2022; PP 5932_CR38 5932_CR39 JG Zhao (5932_CR6) 2022; 43 ZS Huang (5932_CR47) 2023; 621 5932_CR33 5932_CR14 5932_CR37 HY Li (5932_CR21) 2023; 55 YL Li (5932_CR12) 2022; 52 H Zhao (5932_CR31) 2023; 164 DD Li (5932_CR27) 2024; 32 GX Wen (5932_CR9) 2019; 15 SW Liu (5932_CR18) 2023; 134 XN Xia (5932_CR19) 2021; 31 ZR Gao (5932_CR5) 2020; 24 JC Zhai (5932_CR20) 2023; 45 JX Zhang (5932_CR36) 2024; 32 N Maleki (5932_CR16) 2022; 2022 H Zhao (5932_CR30) 2023; 31 DP Li (5932_CR48) 2019; 49 DD Li (5932_CR29) 2024; 54 WW Bai (5932_CR46) 2020; 50 DD Li (5932_CR28) 2023; 31 K Sun (5932_CR4) 2023; 7 P Wan (5932_CR2) 2023; 53 5932_CR41 AK Jain (5932_CR43) 2023; 37 XJ Wu (5932_CR17) 2024; 55 L Chen (5932_CR32) 2022; PP SH Liu (5932_CR35) 2024; 18 GX Wen (5932_CR13) 2021; PP 5932_CR44 5932_CR45 YB Li (5932_CR3) 2024; 137 JF Wang (5932_CR24) 2023; 111 5932_CR25 5932_CR26 5932_CR8 GX Wen (5932_CR15) 2022; 52 5932_CR40 |
| References_xml | – volume: PP start-page: 1524 issue: 3 year: 2021 ident: 5932_CR13 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3105548 – volume: 31 start-page: 2509 issue: 8 year: 2023 ident: 5932_CR28 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2022.3227993 – volume: 46 start-page: 104 issue: 1 year: 2023 ident: 5932_CR42 publication-title: Trans Inst Meas Control doi: 10.1177/01423312231169561 – volume: 24 start-page: 309 issue: 1 year: 2020 ident: 5932_CR5 publication-title: Asian J. Control. doi: 10.1002/asjc.2465 – volume: 50 start-page: 3433 issue: 8 year: 2020 ident: 5932_CR46 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2921057 – ident: 5932_CR8 doi: 10.53941/ijndi.2024.100010 – volume: 15 start-page: 4969 issue: 9 year: 2019 ident: 5932_CR9 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2894282 – volume: 7 start-page: 862 issue: 12 year: 2023 ident: 5932_CR4 publication-title: Fractal and Fractional. doi: 10.3390/fractalfract7120862 – ident: 5932_CR25 – volume: 37 start-page: 1193 issue: 5 year: 2023 ident: 5932_CR43 publication-title: Int. J. Adapt. Control. doi: 10.1002/acs.3570 – volume: 55 start-page: 332 issue: 2 year: 2023 ident: 5932_CR21 publication-title: Int J Syst Sci doi: 10.1080/00207721.2023.2272217 – ident: 5932_CR44 doi: 10.1007/s11071-024-10234-5 – ident: 5932_CR40 doi: 10.1016/j.fss.2024.109140 – volume: 474 year: 2024 ident: 5932_CR34 publication-title: Fuzzy Set Syst doi: 10.1016/j.fss.2023.108735 – ident: 5932_CR14 doi: 10.1109/JSYST.2023.3280192 – ident: 5932_CR26 doi: 10.1109/TFUZZ.2024.3519720 – ident: 5932_CR39 doi: 10.1109/TFUZZ.2024.3357083 – volume: 52 start-page: 10542 issue: 10 year: 2022 ident: 5932_CR12 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3069587 – volume: 621 start-page: 407 year: 2023 ident: 5932_CR47 publication-title: Inform Sci doi: 10.1016/j.ins.2022.11.109 – volume: 43 start-page: 1623 issue: 6 year: 2022 ident: 5932_CR6 publication-title: Optim. Contr. Appl. Met. doi: 10.1002/oca.2916 – volume: 55 start-page: 2008 issue: 10 year: 2024 ident: 5932_CR17 publication-title: Int J Syst Sci doi: 10.1080/00207721.2024.2328780 – volume: 45 start-page: 374 issue: 2 year: 2023 ident: 5932_CR20 publication-title: Trans Inst Meas Control doi: 10.1177/01423312221110437 – volume: 31 start-page: 2734 issue: 8 year: 2023 ident: 5932_CR1 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2023.3235431 – ident: 5932_CR38 doi: 10.1109/JSYST.2024.3433023 – volume: 32 start-page: 958 issue: 3 year: 2024 ident: 5932_CR22 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2023.3315458 – volume: 53 start-page: 5116 issue: 8 year: 2023 ident: 5932_CR2 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2023.3257170 – volume: 21 start-page: 1349 issue: 4 year: 2023 ident: 5932_CR7 publication-title: Int J Control Autom Syst doi: 10.1007/s12555-022-0223-4 – volume: 164 start-page: 508 year: 2023 ident: 5932_CR31 publication-title: Neural Netw doi: 10.1016/j.neunet.2023.05.001 – volume: 45 start-page: 2364 issue: 5 year: 2024 ident: 5932_CR11 publication-title: Optim Contr Appl Met doi: 10.1002/oca.3160 – volume: 18 start-page: 758 issue: 1 year: 2024 ident: 5932_CR35 publication-title: IEEE Syst J doi: 10.1109/JSYST.2024.3350771 – volume: 137 year: 2024 ident: 5932_CR3 publication-title: Commun. Nonlinear Sci. doi: 10.1016/j.cnsns.2024.108144 – volume: 52 start-page: 5004 issue: 8 year: 2022 ident: 5932_CR15 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2021.3112688 – volume: 134 start-page: 122 year: 2023 ident: 5932_CR18 publication-title: ISA Trans doi: 10.1016/j.isatra.2022.07.027 – ident: 5932_CR45 doi: 10.1080/00207721.2024.2344059 – volume: PP start-page: 2066 issue: 2 year: 2022 ident: 5932_CR23 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3186528 – volume: 111 start-page: 19133 issue: 20 year: 2023 ident: 5932_CR24 publication-title: Nonlinear Dynam. doi: 10.1007/s11071-023-08871-3 – volume: 32 start-page: 2390 issue: 4 year: 2024 ident: 5932_CR36 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2024.3351993 – volume: 31 start-page: 9074 issue: 18 year: 2021 ident: 5932_CR19 publication-title: Int. J. Robust Nonlin. doi: 10.1002/rnc.5747 – volume: 54 start-page: 1059 issue: 2 year: 2024 ident: 5932_CR29 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2023.3320653 – volume: 31 start-page: 4010 issue: 11 year: 2023 ident: 5932_CR30 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2023.3273566 – ident: 5932_CR37 doi: 10.1016/j.neucom.2024.128176 – volume: 29 start-page: 3850 issue: 8 year: 2018 ident: 5932_CR10 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2803726 – volume: PP start-page: 7520 issue: 6 year: 2022 ident: 5932_CR32 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3214681 – volume: 49 start-page: 1249 issue: 4 year: 2019 ident: 5932_CR48 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2799683 – ident: 5932_CR41 doi: 10.1016/j.ins.2024.121350 – volume: 2022 start-page: 1902166 issue: 1 year: 2022 ident: 5932_CR16 publication-title: Sfi. S. Sci. C. doi: 10.1155/2022/1902166 – ident: 5932_CR33 doi: 10.1016/j.ins.2024.120756 – volume: 32 start-page: 214 issue: 1 year: 2024 ident: 5932_CR27 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2023.3294928 |
| SSID | ssj0003301 |
| Score | 2.524041 |
| Snippet | In this paper, the problem of adaptive optimized tracking control design is addressed for a class of nonlinear systems in strict-feedback form. The system... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 129 |
| SubjectTerms | Adaptive control Adaptive systems Algorithms Closed loops Cost function Delay Dynamical systems Feedback control Machine learning Neural networks Nonlinear control Nonlinear dynamics Nonlinear systems Performance indices State observers Subsystems Tracking control |
| Title | Neural network-based adaptive reinforcement learning for optimized backstepping tracking control of nonlinear systems with input delay |
| URI | https://www.proquest.com/docview/3143078063 |
| Volume | 55 |
| WOSCitedRecordID | wos001374810800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9j-OCL8xOnU_Lgmwba5qPto4jDBxmCH-ytJGkyBrqNror6B_h3e9d2k4EKe2vD9RpyTe6S3v1-hJzFLnJIV8eSSEsmpAmY8Q5zGmTu0cXFeYUzexsPBslwmN61yMWff_CxyE1gWk8kGNLPRQwjxlDVxVr3T8tlFzbmFT0ebCiYUumwqZD5XcWqF1pdhCvP0u-s16dtstVEkPSyNvkOabnJLuks2BloM1n3yBfiboDgpE70ZuivcqpzPcMVjhauwky11fEgbcgjRhSa6BQkXsafIG2wAr90iOEwomUBd3jRpLfTqaeTGmlDF7SGhJ5TPNil4wl0hiIA5cc-eexfP1zdsIZ1gdkoliWTXMhUJ85pF1sL7t4rH-SJNNqJIImtT7UGt55EApoVN4mJuUqlMMo67nXID0gbXu4OCYXoQ3EuufYuFLAvMUFogjQAPVykPnBdEi6skNkGkhyZMZ6zHzBlHOgMBjqrBjp775Lz5TOzGpDjX-newrhZMznnGYcYESIjCM6O1lJ2TDYjZP-tDmB6pF0Wr-6EbNi3cjwvTquv8Ru6udn- |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network-based+adaptive+reinforcement+learning+for+optimized+backstepping+tracking+control+of+nonlinear+systems+with+input+delay&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=2&rft.spage=129&rft_id=info:doi/10.1007%2Fs10489-024-05932-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |