Cracking in-memory database index: A case study for Adaptive Radix Tree index

Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher qu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information systems (Oxford) Ročník 104; s. 101913
Hlavní autori: Wu, Gang, Song, Yidong, Zhao, Guodong, Sun, Wei, Han, Donghong, Qiao, Baiyou, Wang, Guoren, Yuan, Ye
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.02.2022
Elsevier Science Ltd
Predmet:
ISSN:0306-4379, 1873-6076
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher query processing performance than disk databases and is more suitable for real-time query processing. Therefore, there is an urgent need to reduce the index creation and update cost for in-memory databases. Database cracking technology is currently recognized as an effective method to reduce the index initialization time. However, conventional cracking algorithms are focused on simple column data structure rather than those complex index structures for in-memory databases. In order to show the feasibility of in-memory database index cracking and promote to future more extensive research, this paper conducted a case study on the Adaptive Radix Tree (ART), a popular tree index structure of in-memory databases. On the basis of carefully examining the ART index construction overhead, an algorithm using auxiliary data structures to crack the ART index is proposed. This makes it possible to build up an ART index step by step with incessant queries, and hence avoids the poor instant availability of a complete index which is constructed once and for all, but is time consuming. Furthermore, updating a cracking ART index is considered as well. Extensive experiments show that the average initialization time of the ART cracker index is reduced by 75%, and the query response time gradually approaches the original ART algorithm with the coming queries. •In-memory database indexes have more extensive research and application space.•Database Cracking is used as a method applied to in-memory database indexes.•The algorithm has better performance advantages under random queries.
AbstractList Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher query processing performance than disk databases and is more suitable for real-time query processing. Therefore, there is an urgent need to reduce the index creation and update cost for in-memory databases. Database cracking technology is currently recognized as an effective method to reduce the index initialization time. However, conventional cracking algorithms are focused on simple column data structure rather than those complex index structures for in-memory databases. In order to show the feasibility of in-memory database index cracking and promote to future more extensive research, this paper conducted a case study on the Adaptive Radix Tree (ART), a popular tree index structure of in-memory databases. On the basis of carefully examining the ART index construction overhead, an algorithm using auxiliary data structures to crack the ART index is proposed. This makes it possible to build up an ART index step by step with incessant queries, and hence avoids the poor instant availability of a complete index which is constructed once and for all, but is time consuming. Furthermore, updating a cracking ART index is considered as well. Extensive experiments show that the average initialization time of the ART cracker index is reduced by 75%, and the query response time gradually approaches the original ART algorithm with the coming queries. •In-memory database indexes have more extensive research and application space.•Database Cracking is used as a method applied to in-memory database indexes.•The algorithm has better performance advantages under random queries.
Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher query processing performance than disk databases and is more suitable for real-time query processing. Therefore, there is an urgent need to reduce the index creation and update cost for in-memory databases. Database cracking technology is currently recognized as an effective method to reduce the index initialization time. However, conventional cracking algorithms are focused on simple column data structure rather than those complex index structures for in-memory databases. In order to show the feasibility of in-memory database index cracking and promote to future more extensive research, this paper conducted a case study on the Adaptive Radix Tree (ART), a popular tree index structure of in-memory databases. On the basis of carefully examining the ART index construction overhead, an algorithm using auxiliary data structures to crack the ART index is proposed. This makes it possible to build up an ART index step by step with incessant queries, and hence avoids the poor instant availability of a complete index which is constructed once and for all, but is time consuming. Furthermore, updating a cracking ART index is considered as well. Extensive experiments show that the average initialization time of the ART cracker index is reduced by 75%, and the query response time gradually approaches the original ART algorithm with the coming queries.
ArticleNumber 101913
Author Sun, Wei
Yuan, Ye
Zhao, Guodong
Song, Yidong
Wang, Guoren
Qiao, Baiyou
Wu, Gang
Han, Donghong
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0002-9855-6300
  surname: Wu
  fullname: Wu, Gang
  email: wugang@mail.neu.edu.cn
  organization: School of Computer Science and Engineering, Northeastern University, China
– sequence: 2
  givenname: Yidong
  surname: Song
  fullname: Song, Yidong
  email: 2488951516@qq.com
  organization: School of Computer Science and Engineering, Northeastern University, China
– sequence: 3
  givenname: Guodong
  surname: Zhao
  fullname: Zhao, Guodong
  organization: School of Computer Science and Engineering, Northeastern University, China
– sequence: 4
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  organization: Baidu, China
– sequence: 5
  givenname: Donghong
  surname: Han
  fullname: Han, Donghong
  organization: School of Computer Science and Engineering, Northeastern University, China
– sequence: 6
  givenname: Baiyou
  surname: Qiao
  fullname: Qiao, Baiyou
  organization: School of Computer Science and Engineering, Northeastern University, China
– sequence: 7
  givenname: Guoren
  surname: Wang
  fullname: Wang, Guoren
  organization: School of Computer, Beijing Institute of Technology, China
– sequence: 8
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  organization: School of Computer, Beijing Institute of Technology, China
BookMark eNp1kM1LAzEQxYMo2FbvHgOet06S3U3TWyl-QUWQeg75mJWsdrcm29L-927ZXj0Nb3i_mccbk8umbZCQOwZTBqx8qKchTTlwdpKKiQsyYjMpshJkeUlGIKDMciHVNRmnVAMAL5QakbdlNO47NF80NNkGN208Um86Y03CfuXxMKcL6k4qdTt_pFUb6cKbbRf2SD-MDwe6jnj23pCryvwkvD3PCfl8elwvX7LV-_PrcrHKHJdFl-XGysKikpXzdmaYLVzuLFaGYWFczqV1OfoSzQysd1gxw5UsQEgBCB68mJD74e42tr87TJ2u211s-peal0yVUvCC9y4YXC62KUWs9DaGjYlHzUCfStO1Dj3Rl6aH0npkPiDYp98HjDq5gI1DHyK6Tvs2_A__Ae18dbs
Cites_doi 10.1145/1247480.1247527
10.1007/s00778-013-0345-7
10.1145/1559845.1559878
10.1145/781027.781063
10.1109/ICDE.2013.6544812
10.1109/ICDE.2017.54
10.1109/ICDE.2018.00064
10.1145/2168836.2168855
10.1145/2619228.2619232
10.1007/s00778-015-0397-y
10.1145/2933349.2933352
10.1007/s002360050048
10.1145/342009.335449
10.1109/ICDEW.2010.5452743
10.1007/978-3-642-18206-8_13
10.1145/2723372.2723719
10.1109/ICDE.2013.6544834
10.1145/1807167.1807206
10.1109/ICDE.2011.5767867
10.14778/3358701.3358705
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.is.2021.101913
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
ExternalDocumentID 10_1016_j_is_2021_101913
S0306437921001228
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2019YFB1405302
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: State Key Laboratory of Computer Software New Technology Open Project Fund, China
  grantid: KFKT2018B05
– fundername: NSFC, China
  grantid: 61872072
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c275t-4ab75be97fcdb8a1b5c4cbefa1e5ac427bc4ed6ea80bdcef1a297503730e0d0d3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718044500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4379
IngestDate Fri Nov 14 18:44:09 EST 2025
Sat Nov 29 07:22:04 EST 2025
Fri Feb 23 02:42:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Database cracking
ART
In-memory database
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c275t-4ab75be97fcdb8a1b5c4cbefa1e5ac427bc4ed6ea80bdcef1a297503730e0d0d3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-9855-6300
PQID 2619673252
PQPubID 2035446
ParticipantIDs proquest_journals_2619673252
crossref_primary_10_1016_j_is_2021_101913
elsevier_sciencedirect_doi_10_1016_j_is_2021_101913
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information systems (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Schuhknecht, Jindal, Dittrich (b15) 2013; 7
Yandong Mao, Eddie Kohler, Robert Tappan Morris, Cache craftiness for fast multicore key–value storage, in: EuroSys 2012, pp. 183–196.
Richard A. Hankins, Jignesh M. Patel, Effect of node size on the performance of cache-conscious B+-trees, in: SIGMETRICS 2003, pp. 283–294.
Changkyu Kim, Jatin Chhugani, et al. FAST: fast architecture sensitive tree search on modern CPUs and GPUs, in: SIGMOD Conference 2010, pp. 339–350.
Martin L. Kersten, Stefan Manegold, Cracking the database store, in: CIDR 2005, pp 213–224.
Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, The Bw-Tree: A B-tree for new hardware platforms, in: ICDE 2013, pp. 302–313.
Halim, Idreos, Karras, Yap (b20) 2012; 5
Holanda, Raasveldt, Manegold, Mühleisen (b28) 2019; 13
Stratos Idreos, Martin L. Kersten, Stefan Manegold, Self-organizing tuple reconstruction in column-stores, in: SIGMOD Conference 2009, pp. 297–308.
Zhongle Xie, Qingchao Cai, Gang Chen, Rui Mao, Meihui Zhang, A comprehensive performance evaluation of modern in-memory indices, in: ICDE 2018, pp. 641–652.
Idreos, Manegold, Kuno, Graefe (b21) 2011; 4
Viktor Leis, Florian Scheibner, Alfons Kemper, Thomas Neumann, The ART of practical synchronization. DaMoN 2016: 3:1-3:8.
Zhongle Xie, Qingchao Cai, H.V. Jagadish, Beng Chin Ooi, Weng-Fai Wong, Parallelizing skip lists for in-memory multi-core database systems, in: ICDE 2017, pp. 119–122.
Eleni Petraki, Stratos Idreos, Stefan Manegold, Holistic indexing in main-memory column-stores, in: SIGMOD Conference 2015, pp. 1153–1166.
Cooper, Silberstein, Tam, Ramakrishnan, Sears (b13) 2010
Graefe, Halim, Idreos (b25) 2014; 23
Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold, Martin L. Kersten, Database cracking: fancy scan, not poor man’s sort! DaMoN 2014, 4:1-4:8.
Jun Rao, Kenneth A. Ross, Making B+-Trees cache conscious in main memory, in: SIGMOD Conference 2000, pp. 475–486.
O’Neil, Cheng, Gawlick (b30) 1996; 33
Stratos Idreos, Martin L. Kersten, Stefan Manegold, Updating a cracked database. SIGMOD Conference 2007: 413-424.
Goetz Graefe, Stratos Idreos, Harumi A. Kuno, Stefan Manegold, Benchmarking adaptive indexing, in: TPCTC 2010, pp. 169–184.
Graefe, Kuno (b23) 2010
Graefe, Halim, Idreos, Kuno, Manegold (b31) 2012; 5
Jun Rao, Kenneth A. Ross, Cache conscious indexing for decision-support in main memory, in: VLDB 1999, pp. 78–89.
Alfons Kemper, Thomas Neumann, HyPer: A hybrid OLTP & OLAP main memory database system based on virtual memory snapshots, in: ICDE 2011, pp. 195–206.
Idreos, Groffen, Nes, Manegold, Sjoerd Mullender, Kersten (b19) 2012; 35
Viktor Leis, Alfons Kemper, Thomas Neumann, The adaptive radix tree: ARTful indexing for main-memory databases, in: ICDE 2013, pp. 38–49.
Idreos, Kersten, Manegold (b10) 2007
Schuhknecht, Jindal, Dittrich (b12) 2016; 25
Goetz. Graefe, Harumi A. Kuno, Adaptive indexing for relational keys, in: ICDE Workshops, 2010, pp. 69–74.
Tobin J. Lehman, Michael J. Carey, A study of index structures for main memory database management systems, in: VLDB, 1986, pp. 294–303.
Schuhknecht (10.1016/j.is.2021.101913_b15) 2013; 7
Holanda (10.1016/j.is.2021.101913_b28) 2019; 13
Schuhknecht (10.1016/j.is.2021.101913_b12) 2016; 25
Graefe (10.1016/j.is.2021.101913_b31) 2012; 5
10.1016/j.is.2021.101913_b29
Graefe (10.1016/j.is.2021.101913_b25) 2014; 23
10.1016/j.is.2021.101913_b11
Cooper (10.1016/j.is.2021.101913_b13) 2010
Idreos (10.1016/j.is.2021.101913_b10) 2007
10.1016/j.is.2021.101913_b14
10.1016/j.is.2021.101913_b17
10.1016/j.is.2021.101913_b16
10.1016/j.is.2021.101913_b1
10.1016/j.is.2021.101913_b2
10.1016/j.is.2021.101913_b3
10.1016/j.is.2021.101913_b4
10.1016/j.is.2021.101913_b5
O’Neil (10.1016/j.is.2021.101913_b30) 1996; 33
10.1016/j.is.2021.101913_b6
10.1016/j.is.2021.101913_b7
10.1016/j.is.2021.101913_b8
Idreos (10.1016/j.is.2021.101913_b21) 2011; 4
10.1016/j.is.2021.101913_b9
10.1016/j.is.2021.101913_b18
10.1016/j.is.2021.101913_b22
Graefe (10.1016/j.is.2021.101913_b23) 2010
10.1016/j.is.2021.101913_b24
Idreos (10.1016/j.is.2021.101913_b19) 2012; 35
10.1016/j.is.2021.101913_b26
Halim (10.1016/j.is.2021.101913_b20) 2012; 5
10.1016/j.is.2021.101913_b27
References_xml – reference: Zhongle Xie, Qingchao Cai, Gang Chen, Rui Mao, Meihui Zhang, A comprehensive performance evaluation of modern in-memory indices, in: ICDE 2018, pp. 641–652.
– reference: Stratos Idreos, Martin L. Kersten, Stefan Manegold, Updating a cracked database. SIGMOD Conference 2007: 413-424.
– reference: Jun Rao, Kenneth A. Ross, Cache conscious indexing for decision-support in main memory, in: VLDB 1999, pp. 78–89.
– volume: 7
  start-page: 97
  year: 2013
  end-page: 108
  ident: b15
  article-title: The uncracked pieces in database cracking
  publication-title: PVLDB
– volume: 5
  start-page: 656
  year: 2012
  end-page: 667
  ident: b31
  article-title: Concurrency control for adaptive indexing
  publication-title: PVLDB
– start-page: 371
  year: 2010
  end-page: 381
  ident: b23
  article-title: Self-selecting, self-tuning, incrementally optimized indexes
  publication-title: EDBT
– reference: Richard A. Hankins, Jignesh M. Patel, Effect of node size on the performance of cache-conscious B+-trees, in: SIGMETRICS 2003, pp. 283–294.
– reference: Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, The Bw-Tree: A B-tree for new hardware platforms, in: ICDE 2013, pp. 302–313.
– start-page: 68
  year: 2007
  end-page: 78
  ident: b10
  article-title: Database cracking
  publication-title: CIDR
– reference: Goetz. Graefe, Harumi A. Kuno, Adaptive indexing for relational keys, in: ICDE Workshops, 2010, pp. 69–74.
– reference: Goetz Graefe, Stratos Idreos, Harumi A. Kuno, Stefan Manegold, Benchmarking adaptive indexing, in: TPCTC 2010, pp. 169–184.
– volume: 4
  start-page: 585
  year: 2011
  end-page: 597
  ident: b21
  article-title: Merging what’s cracked, cracking what’s merged: Adaptive indexing in main-memory column-stores
  publication-title: PVLDB
– reference: Jun Rao, Kenneth A. Ross, Making B+-Trees cache conscious in main memory, in: SIGMOD Conference 2000, pp. 475–486.
– reference: Martin L. Kersten, Stefan Manegold, Cracking the database store, in: CIDR 2005, pp 213–224.
– start-page: 143
  year: 2010
  end-page: 154
  ident: b13
  article-title: Benchmarking cloud serving systems with YCSB
  publication-title: SoCC
– volume: 25
  start-page: 27
  year: 2016
  end-page: 52
  ident: b12
  article-title: An experimental evaluation and analysis of database cracking
  publication-title: VLDB J.
– reference: Stratos Idreos, Martin L. Kersten, Stefan Manegold, Self-organizing tuple reconstruction in column-stores, in: SIGMOD Conference 2009, pp. 297–308.
– reference: Viktor Leis, Alfons Kemper, Thomas Neumann, The adaptive radix tree: ARTful indexing for main-memory databases, in: ICDE 2013, pp. 38–49.
– reference: Viktor Leis, Florian Scheibner, Alfons Kemper, Thomas Neumann, The ART of practical synchronization. DaMoN 2016: 3:1-3:8.
– reference: Eleni Petraki, Stratos Idreos, Stefan Manegold, Holistic indexing in main-memory column-stores, in: SIGMOD Conference 2015, pp. 1153–1166.
– reference: Zhongle Xie, Qingchao Cai, H.V. Jagadish, Beng Chin Ooi, Weng-Fai Wong, Parallelizing skip lists for in-memory multi-core database systems, in: ICDE 2017, pp. 119–122.
– volume: 35
  start-page: 40
  year: 2012
  end-page: 45
  ident: b19
  article-title: MonetDB: Two decades of research in column-oriented database architectures
  publication-title: IEEE Data Eng. Bull.
– reference: Tobin J. Lehman, Michael J. Carey, A study of index structures for main memory database management systems, in: VLDB, 1986, pp. 294–303.
– reference: Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold, Martin L. Kersten, Database cracking: fancy scan, not poor man’s sort! DaMoN 2014, 4:1-4:8.
– reference: Alfons Kemper, Thomas Neumann, HyPer: A hybrid OLTP & OLAP main memory database system based on virtual memory snapshots, in: ICDE 2011, pp. 195–206.
– reference: Yandong Mao, Eddie Kohler, Robert Tappan Morris, Cache craftiness for fast multicore key–value storage, in: EuroSys 2012, pp. 183–196.
– reference: Changkyu Kim, Jatin Chhugani, et al. FAST: fast architecture sensitive tree search on modern CPUs and GPUs, in: SIGMOD Conference 2010, pp. 339–350.
– volume: 5
  start-page: 502
  year: 2012
  end-page: 513
  ident: b20
  article-title: Stochastic database cracking: Towards robust adaptive indexing in main-memory column-stores
  publication-title: PVLDB
– volume: 13
  start-page: 2366
  year: 2019
  end-page: 2378
  ident: b28
  article-title: Progressive indexes: indexing for interactive data analysis
  publication-title: Proc. VLDB Endow. 12
– volume: 33
  start-page: 351
  year: 1996
  end-page: 385
  ident: b30
  article-title: The log-structured merge-tree (LSM-tree)
  publication-title: Acta Inform.
– volume: 23
  start-page: 303
  year: 2014
  end-page: 328
  ident: b25
  article-title: Transactional support for adaptive indexing
  publication-title: VLDB J.
– ident: 10.1016/j.is.2021.101913_b11
  doi: 10.1145/1247480.1247527
– volume: 23
  start-page: 303
  issue: 2
  year: 2014
  ident: 10.1016/j.is.2021.101913_b25
  article-title: Transactional support for adaptive indexing
  publication-title: VLDB J.
  doi: 10.1007/s00778-013-0345-7
– ident: 10.1016/j.is.2021.101913_b24
  doi: 10.1145/1559845.1559878
– ident: 10.1016/j.is.2021.101913_b14
  doi: 10.1145/781027.781063
– start-page: 371
  year: 2010
  ident: 10.1016/j.is.2021.101913_b23
  article-title: Self-selecting, self-tuning, incrementally optimized indexes
– volume: 7
  start-page: 97
  issue: 2
  year: 2013
  ident: 10.1016/j.is.2021.101913_b15
  article-title: The uncracked pieces in database cracking
  publication-title: PVLDB
– ident: 10.1016/j.is.2021.101913_b1
– ident: 10.1016/j.is.2021.101913_b3
– start-page: 143
  year: 2010
  ident: 10.1016/j.is.2021.101913_b13
  article-title: Benchmarking cloud serving systems with YCSB
– ident: 10.1016/j.is.2021.101913_b8
  doi: 10.1109/ICDE.2013.6544812
– ident: 10.1016/j.is.2021.101913_b7
  doi: 10.1109/ICDE.2017.54
– ident: 10.1016/j.is.2021.101913_b9
  doi: 10.1109/ICDE.2018.00064
– ident: 10.1016/j.is.2021.101913_b5
  doi: 10.1145/2168836.2168855
– volume: 5
  start-page: 502
  issue: 6
  year: 2012
  ident: 10.1016/j.is.2021.101913_b20
  article-title: Stochastic database cracking: Towards robust adaptive indexing in main-memory column-stores
  publication-title: PVLDB
– ident: 10.1016/j.is.2021.101913_b26
  doi: 10.1145/2619228.2619232
– start-page: 68
  year: 2007
  ident: 10.1016/j.is.2021.101913_b10
  article-title: Database cracking
– volume: 25
  start-page: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.is.2021.101913_b12
  article-title: An experimental evaluation and analysis of database cracking
  publication-title: VLDB J.
  doi: 10.1007/s00778-015-0397-y
– volume: 35
  start-page: 40
  issue: 1
  year: 2012
  ident: 10.1016/j.is.2021.101913_b19
  article-title: MonetDB: Two decades of research in column-oriented database architectures
  publication-title: IEEE Data Eng. Bull.
– ident: 10.1016/j.is.2021.101913_b17
  doi: 10.1145/2933349.2933352
– volume: 33
  start-page: 351
  issue: 4
  year: 1996
  ident: 10.1016/j.is.2021.101913_b30
  article-title: The log-structured merge-tree (LSM-tree)
  publication-title: Acta Inform.
  doi: 10.1007/s002360050048
– ident: 10.1016/j.is.2021.101913_b2
  doi: 10.1145/342009.335449
– volume: 5
  start-page: 656
  issue: 7
  year: 2012
  ident: 10.1016/j.is.2021.101913_b31
  article-title: Concurrency control for adaptive indexing
  publication-title: PVLDB
– ident: 10.1016/j.is.2021.101913_b22
  doi: 10.1109/ICDEW.2010.5452743
– volume: 4
  start-page: 585
  issue: 9
  year: 2011
  ident: 10.1016/j.is.2021.101913_b21
  article-title: Merging what’s cracked, cracking what’s merged: Adaptive indexing in main-memory column-stores
  publication-title: PVLDB
– ident: 10.1016/j.is.2021.101913_b29
  doi: 10.1007/978-3-642-18206-8_13
– ident: 10.1016/j.is.2021.101913_b18
– ident: 10.1016/j.is.2021.101913_b27
  doi: 10.1145/2723372.2723719
– ident: 10.1016/j.is.2021.101913_b6
  doi: 10.1109/ICDE.2013.6544834
– ident: 10.1016/j.is.2021.101913_b4
  doi: 10.1145/1807167.1807206
– ident: 10.1016/j.is.2021.101913_b16
  doi: 10.1109/ICDE.2011.5767867
– volume: 13
  start-page: 2366
  year: 2019
  ident: 10.1016/j.is.2021.101913_b28
  article-title: Progressive indexes: indexing for interactive data analysis
  publication-title: Proc. VLDB Endow. 12
  doi: 10.14778/3358701.3358705
SSID ssj0002599
Score 2.3297505
Snippet Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 101913
SubjectTerms Algorithms
Antiretroviral therapy
Case studies
Columnar structure
Data structures
Database cracking
Experiments
Feasibility
In-memory database
Indexes
Information systems
Memory
Performance indices
Queries
Query processing
Reaction time
Response time (computers)
Time
Title Cracking in-memory database index: A case study for Adaptive Radix Tree index
URI https://dx.doi.org/10.1016/j.is.2021.101913
https://www.proquest.com/docview/2619673252
Volume 104
WOSCitedRecordID wos000718044500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5UAPPAqIQkE-cEErI-fpuLdV1RYQVAgWdeES-RWRomZX-6iWf8_4kWy2qIgeuERZx2tZni8z48k3Y4RexZmhhU44ibkuiPXJCeeVIIKbnCeFjiJfxPUDOz0txmP-KdDG5u44AdY0xWrFp_9V1NAGwrapszcQdzcoNMA9CB2uIHa4_pPgD2dC_fSZKuTC8mh_DSwN1JqrgauN6JPRlf3tiss6puFQi6ljEX0Wul4NRjMTeve915C75CDjS0C7mK1POuzFFM6WLtwuglW0AZzA_P1W68m69fsP4SK1J8tJv_nL0qnCM1P3YxKwnaUdvyPkYtGc2EqHG3qWpj1NCaqA-yzUP5S4jyecw1Cwf4-jN-uum_Wyr9ixjl3YEtfOy3pe2hFKP8JttB2zjIPu2x6-Oxq_7yw2bAG5_9rkZx0-Z3se4OYsrnNfrhhy552MHqB7YVuBhx4OD9Et0-yi--2RHTho8F2006s_-Qh9bLGCO6zgFivYSf8AD7FFCnZIwSBn3CIFO6RgixTf9zH6enw0OnxLwvkaRME6LEgqJMuk4axSWhYikplKlTSViEwmVBozqVKjcyMKKrUyVSRsGjZNwCgYqqlOnqCtZtKYpwhTVVEh06iKdZaKlIHV5FqrSsmcMaWiPfS6XbZy6suolNeJaQ8l7bqWwQ307l0JAPnLv_ZbEZThbYTnORgYlsRZ_OwGE3iO7q5BvY-2FrOleYHuqMtFPZ-9DOD5DakRhKw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cracking+in-memory+database+index%3A+A+case+study+for+Adaptive+Radix+Tree+index&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Wu%2C+Gang&rft.au=Song%2C+Yidong&rft.au=Zhao%2C+Guodong&rft.au=Sun%2C+Wei&rft.date=2022-02-01&rft.issn=0306-4379&rft.volume=104&rft.spage=101913&rft_id=info:doi/10.1016%2Fj.is.2021.101913&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2021_101913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon