A feature selection algorithm combining information gain and multi-objective genetic search for intrusion detection system

In order to improve the detection rate and speed of intrusion detection system, this paper proposes a feature selection algorithm. The algorithm uses information gain to rank the features in descending order, and then uses a multi-objective genetic algorithm to gradually search the ranking features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences Jg. 336; S. 8008
1. Verfasser: Xie, Tao
Format: Journal Article Tagungsbericht
Sprache:Englisch
Veröffentlicht: Les Ulis EDP Sciences 2021
Schlagworte:
ISSN:2261-236X, 2274-7214, 2261-236X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to improve the detection rate and speed of intrusion detection system, this paper proposes a feature selection algorithm. The algorithm uses information gain to rank the features in descending order, and then uses a multi-objective genetic algorithm to gradually search the ranking features to find the optimal feature combination. We classified the Kddcup98 dataset into five classes, DOS, PROBE, R2L, and U2R, and conducted numerous experiments on each class. Experimental results show that for each class of attack, the proposed algorithm can not only speed up the feature selection, but also significantly improve the detection rate of the algorithm.
Bibliographie:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/202133608008