Deep Learning Architectures and Techniques for Multi-organ Segmentation
Deep learning architectures used for automatic multi-organ segmentation in the medical field have gained increased attention in the last years as the results and achievements outweighed the older techniques. Due to improvements in the computer hardware and the development of specialized network desi...
Uloženo v:
| Vydáno v: | International journal of advanced computer science & applications Ročník 12; číslo 1 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
West Yorkshire
Science and Information (SAI) Organization Limited
2021
|
| Témata: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep learning architectures used for automatic multi-organ segmentation in the medical field have gained increased attention in the last years as the results and achievements outweighed the older techniques. Due to improvements in the computer hardware and the development of specialized network designs, deep learning segmentation presents exciting developments and opportunities also for future research. Therefore, we have compiled a review of the most interesting deep learning architectures applicable to medical multi-organ segmentation. We have summarized over 50 contributions, most of which are more recent than 3 years. The papers were grouped into three categories based on the architecture: “Convolutional Neural Networks” (CNNs), “Fully Convolutional Neural Networks” (FCNs) and hybrid architectures that combine more designs - including “Generative Adversarial Networks” (GANs) or “Recurrent Neural Networks” (RNNs). Afterwards we present the most used multi-organ datasets, and we finalize by making a general discussion of current shortcomings and future potential research paths. |
|---|---|
| AbstractList | Deep learning architectures used for automatic multi-organ segmentation in the medical field have gained increased attention in the last years as the results and achievements outweighed the older techniques. Due to improvements in the computer hardware and the development of specialized network designs, deep learning segmentation presents exciting developments and opportunities also for future research. Therefore, we have compiled a review of the most interesting deep learning architectures applicable to medical multi-organ segmentation. We have summarized over 50 contributions, most of which are more recent than 3 years. The papers were grouped into three categories based on the architecture: “Convolutional Neural Networks” (CNNs), “Fully Convolutional Neural Networks” (FCNs) and hybrid architectures that combine more designs - including “Generative Adversarial Networks” (GANs) or “Recurrent Neural Networks” (RNNs). Afterwards we present the most used multi-organ datasets, and we finalize by making a general discussion of current shortcomings and future potential research paths. |
| Author | Ogrean, Valentin Dorobantiu, Alexandru Brad, Remus |
| Author_xml | – sequence: 1 givenname: Valentin surname: Ogrean fullname: Ogrean, Valentin – sequence: 2 givenname: Alexandru surname: Dorobantiu fullname: Dorobantiu, Alexandru – sequence: 3 givenname: Remus surname: Brad fullname: Brad, Remus |
| BookMark | eNotkM1PAjEQxRuDiYj8Bx428bw4_WR73KAiBuMBTLw1tR1gCXSx2z3437N8vMu8l7zMTH73pBfqgIQ8UhhRIZV-nn2Uk0U5YsDoCCgDCuKG9BmVKpdyDL2zL3IK4587MmyaLXTimqmC98n0BfGQzdHGUIV1Vka3qRK61EZsMht8tkS3CdVf28VVHbPPdpeqvI5rG7IFrvcYkk1VHR7I7cruGhxe54B8v70uJ-_5_Gs6m5Tz3LGxSDlqxZwVWmuvuUZw8MuYQ67AOkDOlXUI1jvpeMGpd7qAwgvHvBCUeoZ8QJ4uew-xPj2VzLZuY-hOGqakpFQLwbuWuLRcrJsm4socYrW38d9QMGdq5kLNnKiZKzV-BMooYY4 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2021.0120104 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2021_0120104 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c274t-e962ca4999d939e0c0b22ce360ac0e336ace0adc5c3831dc9808d4c2d4411d2e3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621697400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sun Nov 09 07:09:50 EST 2025 Sat Nov 29 02:26:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c274t-e962ca4999d939e0c0b22ce360ac0e336ace0adc5c3831dc9808d4c2d4411d2e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2655119443?pq-origsite=%requestingapplication% |
| PQID | 2655119443 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_2655119443 crossref_primary_10_14569_IJACSA_2021_0120104 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2021 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.136812 |
| Snippet | Deep learning architectures used for automatic multi-organ segmentation in the medical field have gained increased attention in the last years as the results... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Artificial neural networks Deep learning Generative adversarial networks Neural networks Recurrent neural networks Segmentation |
| Title | Deep Learning Architectures and Techniques for Multi-organ Segmentation |
| URI | https://www.proquest.com/docview/2655119443 |
| Volume | 12 |
| WOSCitedRecordID | wos000621697400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLDwRpSXPLAaHDsPe0LhUSjQEvGQCkvk2E7FQFqawu_HTpwCCwuLF0uRdWff3XeXuw-AQ59lERfMRzrjOfJJLpHgEUaSUZHnhDOlq0bh26jfZ4MBT1zCrXS_VTY2sTLUaiRtjvyYhIEtefk-PRm_I8saZaurjkJjHix4hHj2nt9EaJZjwcb5h9UkTuPY7BTTaOC650zYwI-71_HZQ2wwIvGObA-p59jaZt7pt3GuPE5n5b9nXQXLLtaEcX051sCcLtbBSsPjAN2z3gCX51qPoZu0OoTxj9pCCUWh4GMz6LWEJsaFVdMuqvig4IMevrn2pWITPHUuHs-ukCNYQNKA0SnSPCRSWMyjOOUaS5wRIjUNsZBYUxoKqbFQMpAGx3pKcoaZ8iVRJobyFNF0C7SKUaG3AfSEH8lIRcLo18c0ZzRjmueKBCyTBsO1AWoEm47rORqpxR9WEWmtiNQqInWKaIO9RrSpe1Vl-i3Xnb-3d8GS_VidKtkDrenkQ--DRfk5fS0nB2Dh9KKf3B9Ul8WsPXJn1iR4MTtJt5c8fwENH8iT |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL3iJcGm0AICSsGLdmlwbE9sL1A1ggLTmY4qMUizC47tIBaEgQxF_BTfWDtxoN2wY8E6kqXkXN2Xc84B-MplLpSWHLtcFZjTwmCtBMFGMl0UVEnraqLwQAyHcjxWv2fgqeXChN8q25xYJ2p7Y8KOfJ-mnXDlxTn7PrnFwTUq3K62FhpNWPTd44Mf2aqD3pHH9xulxz9Gh6c4ugpg4yewKXYqpUaHRt8qphwxJKfUOJYSbYhjLNXGEW1Nx_jhLbFGSSItN9T6xiGx1DF_7izMcyZF0OrvC_y80yG-2Uhr5U9fSINqqhhHtp5vU9R-72f38KzrZ1Ka7AXOahLd4Z6r4f_FoK5wx8vv7duswIfYS6NuE_wfYcaVn2C59alAMW2twsmRcxMUlWQvUfefu5MK6dKiUStkWyHfw6OalIxrvyt05i6vIz2rXIPzN3mddZgrb0q3ASjRXBhhhfbxywkrJMulU4WlHZkbP6NuAm6BzCaNTkgW5qsAfNYAnwXgswj8Jmy3UGYxa1TZC45brz_ehcXT0a9BNugN-59hKRzcrIW2YW56d---wIL5M72q7nbqAEVw8dao_wVkaSEB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Architectures+and+Techniques+for+Multi-organ+Segmentation&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Ogrean%2C+Valentin&rft.au=Dorobantiu%2C+Alexandru&rft.au=Brad%2C+Remus&rft.date=2021&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=1&rft_id=info:doi/10.14569%2FIJACSA.2021.0120104&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2021_0120104 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |