Alz-SAENet: A Deep Sparse Autoencoder based Model for Alzheimer’s Classification
Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and progression allows patients to adopt preventive measures before irreparable brain damage occurs. Magnetic Resonance Imaging is an effective...
Gespeichert in:
| Veröffentlicht in: | International journal of advanced computer science & applications Jg. 13; H. 10 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
West Yorkshire
Science and Information (SAI) Organization Limited
2022
|
| Schlagworte: | |
| ISSN: | 2158-107X, 2156-5570 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and progression allows patients to adopt preventive measures before irreparable brain damage occurs. Magnetic Resonance Imaging is an effective and common clinical strategy to diagnose AD due to its structural details. we built an advanced deep sparse autoencoder-based architecture, named Alz-SAENet for the identification of diseased from typical control subjects using MRI volumes. We focused on a novel optimal feature extraction procedure using the combination of a 3D Convolutional Neural Network (CNN) and deep sparse autoencoder (SAE). Optimal features derived from the bottleneck layer of the hyper-tuned SAE network are subsequently passed via a deep neural network (DNN). This approach results in the improved four-way categorization of AD-prone 3D MRI brain images that prove the capability of this network in AD prognosis to adopt preventive measures. This model is further evaluated using ADNI and Kaggle data and achieved 98.9% and 98.215% accuracy and showed a tremendous response in distinguishing the MRI volumes that are in a transitional phase of AD. |
|---|---|
| AbstractList | Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and progression allows patients to adopt preventive measures before irreparable brain damage occurs. Magnetic Resonance Imaging is an effective and common clinical strategy to diagnose AD due to its structural details. we built an advanced deep sparse autoencoder-based architecture, named Alz-SAENet for the identification of diseased from typical control subjects using MRI volumes. We focused on a novel optimal feature extraction procedure using the combination of a 3D Convolutional Neural Network (CNN) and deep sparse autoencoder (SAE). Optimal features derived from the bottleneck layer of the hyper-tuned SAE network are subsequently passed via a deep neural network (DNN). This approach results in the improved four-way categorization of AD-prone 3D MRI brain images that prove the capability of this network in AD prognosis to adopt preventive measures. This model is further evaluated using ADNI and Kaggle data and achieved 98.9% and 98.215% accuracy and showed a tremendous response in distinguishing the MRI volumes that are in a transitional phase of AD. |
| Author | Reddy, G Nagarjuna Reddy, K Nagi |
| Author_xml | – sequence: 1 givenname: G Nagarjuna surname: Reddy fullname: Reddy, G Nagarjuna – sequence: 2 givenname: K Nagi surname: Reddy fullname: Reddy, K Nagi |
| BookMark | eNotkE1OwzAQhS1UJErpDVhYYp3i_8TsolCgqIBEQWJnOY4tUqVxsNMFrLgG1-MkhLazmbd4M0_vOwWj1rcWgHOMZphxIS8X93mxymcEETJDmGLE8BEYE8xFwnmKRjudJRilbydgGuMaDUMlERkdg-e8-UpW-fzR9lcwh9fWdnDV6RAtzLe9t63xlQ2w1NFW8GHQDXQ-wOHq3dYbG36_fyIsGh1j7Wqj-9q3Z-DY6Sba6WFPwOvN_KW4S5ZPt4siXyaGpKxPKsG1ZKXT1hgqZaWzynDOrEBSSFpSWVKBqtRpYxhLjTOWZEKXQ0OHMdWSTsDF_m8X_MfWxl6t_Ta0Q6QaAlDKCRdocLG9ywQfY7BOdaHe6PCpMFI7gGoPUP0DVAeA9A90-mWm |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2022.0131041 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2022_0131041 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c274t-d65a94bfaecc399da8dc554e609693b39b360d7facc447cfce286ab013f113a93 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923458000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sun Nov 09 06:13:59 EST 2025 Sat Nov 29 02:26:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c274t-d65a94bfaecc399da8dc554e609693b39b360d7facc447cfce286ab013f113a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2740752560?pq-origsite=%requestingapplication% |
| PQID | 2740752560 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_2740752560 crossref_primary_10_14569_IJACSA_2022_0131041 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2022 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.175268 |
| Snippet | Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Alzheimer's disease Artificial neural networks Brain damage Extraction procedures Feature extraction Magnetic resonance imaging Neural networks |
| Title | Alz-SAENet: A Deep Sparse Autoencoder based Model for Alzheimer’s Classification |
| URI | https://www.proquest.com/docview/2740752560 |
| Volume | 13 |
| WOSCitedRecordID | wos000923458000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFL0q0EU3paUgoDSaRbdT_MqMh03l0qDSQmoRQIGNNS-rkSAJiemiq_5Gf69f0nudSSs2bLrx5trWaM7MfXl8DsDbWOZCJ5HneWocz7pacCOt5iqTtRKJM6rVjLw8kf1-PhyqMjTc5uFY5dInto7aTSz1yPexesLoRgH6_fSOk2oUfV0NEhorsEYsCSTdUHav__ZYIgz-omXiRCOxmMph-HsO0wa1f_y5OBwUWCMmyTuinYmy-GF0euic24hztP6_Y30Bz0OuyYrF4ngJT_x4A9aXOg4sbOtXcFbc_OCDotf3zQEr2Efvp2wwxYrXs-K-mRDVpcP7KeA5RuJpNwxTXYZPffOjWz_7_fPXnLXqmnTuqIV6Ey6OeueHn3jQWuAWR9twJ7paZabWCCnmLE7nzmKm4QWWOCo1qTKpiJystbVZJm1tfYIgUxO1juNUq3QLVseTsd8GZkjB3OXCxF2beSV0GkW1cS5JapdKne8AX85xNV1QalRUihAm1QKTijCpAiY7sLec5SpssHn1b4p3Hze_hmf0skXXZA9Wm9m9fwNP7fdmNJ91YO1Dr1-edWDli-R4PU2-dto1hJby-LS8-gMYIcwv |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRJcKE9RWsAHOJomTtaOK1Uo6kNddlkhtqC9Bb8iKpXdZTdtBSf-Bn-CH8UvYSaPVr1w64FzEivOfJlvZmzPB_AyVpk0Igo8S6znac9IbpUzXKeq1FJ4q2vNyE9DNRplk4l-vwK_u7MwtK2y84m1o_YzRzXybcyekN2IoN_Mv3FSjaLV1U5Co4HFIHy_wJRtudvfR_u-EuLw4HjviLeqAtzhGBX3smd0akuDL4_s7E3mHXJqkBjM68Qm2iYy8qo0zqWpcqULAqdD5cIyjhNDzZfQ5a-lSabovxooflnTiTDYkHXnTyRS6pqqJu1pPQxT9Hb_bb43zjEnFeI1tbmJ0vg6G14ng5rhDtf_t29zD-62sTTLG_Dfh5UwfQDrnU4Fa93WQ_iQn_7g4_xgFKodlrP9EOZsPMeMPrD8rJpRK0-P9xOhe0bicKcMQ3mGT30JJ1_D4s_PX0tWq4fSvqoayo_g443M7DGsTmfT8ASYJYV2n0kb91watDRJFJXWeyFKnyiTbQDvbFrMm5YhBaVahIGiwUBBGChaDGzAVmfVonUgy-LKpE__ffkF3D46fjcshv3RYBPu0MBNhWgLVqvFWXgGt9x5dbJcPK-xyuDzTQPgL-UwJdE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alz-SAENet%3A+A+Deep+Sparse+Autoencoder+based+Model+for+Alzheimer%E2%80%99s+Classification&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Reddy%2C+G+Nagarjuna&rft.au=Reddy%2C+K+Nagi&rft.date=2022&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=13&rft.issue=10&rft_id=info:doi/10.14569%2FIJACSA.2022.0131041&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2022_0131041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |