Alz-SAENet: A Deep Sparse Autoencoder based Model for Alzheimer’s Classification

Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and progression allows patients to adopt preventive measures before irreparable brain damage occurs. Magnetic Resonance Imaging is an effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications Jg. 13; H. 10
Hauptverfasser: Reddy, G Nagarjuna, Reddy, K Nagi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2022
Schlagworte:
ISSN:2158-107X, 2156-5570
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and progression allows patients to adopt preventive measures before irreparable brain damage occurs. Magnetic Resonance Imaging is an effective and common clinical strategy to diagnose AD due to its structural details. we built an advanced deep sparse autoencoder-based architecture, named Alz-SAENet for the identification of diseased from typical control subjects using MRI volumes. We focused on a novel optimal feature extraction procedure using the combination of a 3D Convolutional Neural Network (CNN) and deep sparse autoencoder (SAE). Optimal features derived from the bottleneck layer of the hyper-tuned SAE network are subsequently passed via a deep neural network (DNN). This approach results in the improved four-way categorization of AD-prone 3D MRI brain images that prove the capability of this network in AD prognosis to adopt preventive measures. This model is further evaluated using ADNI and Kaggle data and achieved 98.9% and 98.215% accuracy and showed a tremendous response in distinguishing the MRI volumes that are in a transitional phase of AD.
AbstractList Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and progression allows patients to adopt preventive measures before irreparable brain damage occurs. Magnetic Resonance Imaging is an effective and common clinical strategy to diagnose AD due to its structural details. we built an advanced deep sparse autoencoder-based architecture, named Alz-SAENet for the identification of diseased from typical control subjects using MRI volumes. We focused on a novel optimal feature extraction procedure using the combination of a 3D Convolutional Neural Network (CNN) and deep sparse autoencoder (SAE). Optimal features derived from the bottleneck layer of the hyper-tuned SAE network are subsequently passed via a deep neural network (DNN). This approach results in the improved four-way categorization of AD-prone 3D MRI brain images that prove the capability of this network in AD prognosis to adopt preventive measures. This model is further evaluated using ADNI and Kaggle data and achieved 98.9% and 98.215% accuracy and showed a tremendous response in distinguishing the MRI volumes that are in a transitional phase of AD.
Author Reddy, G Nagarjuna
Reddy, K Nagi
Author_xml – sequence: 1
  givenname: G Nagarjuna
  surname: Reddy
  fullname: Reddy, G Nagarjuna
– sequence: 2
  givenname: K Nagi
  surname: Reddy
  fullname: Reddy, K Nagi
BookMark eNotkE1OwzAQhS1UJErpDVhYYp3i_8TsolCgqIBEQWJnOY4tUqVxsNMFrLgG1-MkhLazmbd4M0_vOwWj1rcWgHOMZphxIS8X93mxymcEETJDmGLE8BEYE8xFwnmKRjudJRilbydgGuMaDUMlERkdg-e8-UpW-fzR9lcwh9fWdnDV6RAtzLe9t63xlQ2w1NFW8GHQDXQ-wOHq3dYbG36_fyIsGh1j7Wqj-9q3Z-DY6Sba6WFPwOvN_KW4S5ZPt4siXyaGpKxPKsG1ZKXT1hgqZaWzynDOrEBSSFpSWVKBqtRpYxhLjTOWZEKXQ0OHMdWSTsDF_m8X_MfWxl6t_Ta0Q6QaAlDKCRdocLG9ywQfY7BOdaHe6PCpMFI7gGoPUP0DVAeA9A90-mWm
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2022.0131041
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2022_0131041
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c274t-d65a94bfaecc399da8dc554e609693b39b360d7facc447cfce286ab013f113a93
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923458000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Sun Nov 09 06:13:59 EST 2025
Sat Nov 29 02:26:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-d65a94bfaecc399da8dc554e609693b39b360d7facc447cfce286ab013f113a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2740752560?pq-origsite=%requestingapplication%
PQID 2740752560
PQPubID 5444811
ParticipantIDs proquest_journals_2740752560
crossref_primary_10_14569_IJACSA_2022_0131041
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2022
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.175268
Snippet Precise identification of Alzheimer's Disease (AD) is vital in health care, especially at an early stage, since recognizing the likelihood of incidence and...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Alzheimer's disease
Artificial neural networks
Brain damage
Extraction procedures
Feature extraction
Magnetic resonance imaging
Neural networks
Title Alz-SAENet: A Deep Sparse Autoencoder based Model for Alzheimer’s Classification
URI https://www.proquest.com/docview/2740752560
Volume 13
WOSCitedRecordID wos000923458000041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFL0q0EU3paUgoDSaRbdT_MqMh03l0qDSQmoRQIGNNS-rkSAJiemiq_5Gf69f0nudSSs2bLrx5trWaM7MfXl8DsDbWOZCJ5HneWocz7pacCOt5iqTtRKJM6rVjLw8kf1-PhyqMjTc5uFY5dInto7aTSz1yPexesLoRgH6_fSOk2oUfV0NEhorsEYsCSTdUHav__ZYIgz-omXiRCOxmMph-HsO0wa1f_y5OBwUWCMmyTuinYmy-GF0euic24hztP6_Y30Bz0OuyYrF4ngJT_x4A9aXOg4sbOtXcFbc_OCDotf3zQEr2Efvp2wwxYrXs-K-mRDVpcP7KeA5RuJpNwxTXYZPffOjWz_7_fPXnLXqmnTuqIV6Ey6OeueHn3jQWuAWR9twJ7paZabWCCnmLE7nzmKm4QWWOCo1qTKpiJystbVZJm1tfYIgUxO1juNUq3QLVseTsd8GZkjB3OXCxF2beSV0GkW1cS5JapdKne8AX85xNV1QalRUihAm1QKTijCpAiY7sLec5SpssHn1b4p3Hze_hmf0skXXZA9Wm9m9fwNP7fdmNJ91YO1Dr1-edWDli-R4PU2-dto1hJby-LS8-gMYIcwv
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRJcKE9RWsAHOJomTtaOK1Uo6kNddlkhtqC9Bb8iKpXdZTdtBSf-Bn-CH8UvYSaPVr1w64FzEivOfJlvZmzPB_AyVpk0Igo8S6znac9IbpUzXKeq1FJ4q2vNyE9DNRplk4l-vwK_u7MwtK2y84m1o_YzRzXybcyekN2IoN_Mv3FSjaLV1U5Co4HFIHy_wJRtudvfR_u-EuLw4HjviLeqAtzhGBX3smd0akuDL4_s7E3mHXJqkBjM68Qm2iYy8qo0zqWpcqULAqdD5cIyjhNDzZfQ5a-lSabovxooflnTiTDYkHXnTyRS6pqqJu1pPQxT9Hb_bb43zjEnFeI1tbmJ0vg6G14ng5rhDtf_t29zD-62sTTLG_Dfh5UwfQDrnU4Fa93WQ_iQn_7g4_xgFKodlrP9EOZsPMeMPrD8rJpRK0-P9xOhe0bicKcMQ3mGT30JJ1_D4s_PX0tWq4fSvqoayo_g443M7DGsTmfT8ASYJYV2n0kb91watDRJFJXWeyFKnyiTbQDvbFrMm5YhBaVahIGiwUBBGChaDGzAVmfVonUgy-LKpE__ffkF3D46fjcshv3RYBPu0MBNhWgLVqvFWXgGt9x5dbJcPK-xyuDzTQPgL-UwJdE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alz-SAENet%3A+A+Deep+Sparse+Autoencoder+based+Model+for+Alzheimer%E2%80%99s+Classification&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Reddy%2C+G+Nagarjuna&rft.au=Reddy%2C+K+Nagi&rft.date=2022&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=13&rft.issue=10&rft_id=info:doi/10.14569%2FIJACSA.2022.0131041&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2022_0131041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon