Enhanced Early Detection of Diabetic Nephropathy Using a Hybrid Autoencoder-LSTM Model for Clinical Prediction
Early detection and precise prediction are essential in medical diagnosis, particularly for diseases such as diabetic nephropathy (DN), which tends to go undiagnosed at its early stages. Conventional diagnostic techniques may not be sensitive and timely, and hence, early intervention might be diffic...
Saved in:
| Published in: | International journal of advanced computer science & applications Vol. 16; no. 2 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
West Yorkshire
Science and Information (SAI) Organization Limited
2025
|
| Subjects: | |
| ISSN: | 2158-107X, 2156-5570 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Early detection and precise prediction are essential in medical diagnosis, particularly for diseases such as diabetic nephropathy (DN), which tends to go undiagnosed at its early stages. Conventional diagnostic techniques may not be sensitive and timely, and hence, early intervention might be difficult. This research delves into the application of a hybrid Autoencoder-LSTM model to improve DN detection. The Autoencoder (AE) unit compresses clinical data with preservation of important features and dimensionality reduction. The Long Short-Term Memory (LSTM) network subsequently processes temporal patterns and sequential dependency, enhancing feature learning for timely diagnosis. Clinical and demographic information from diabetic patients are included in the dataset, evaluating variables such as age, sex, type of diabetes, duration of disease, smoking, and alcohol use. The model is done using Python and exhibits better performance compared to conventional methods. The Hybrid AE-LSTM model proposed here attains an accuracy of 99.2%, which is a 6.68% improvement over Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression. The findings demonstrate the power of deep learning in detecting DN early and accurately and present a novel tool for proactive disease control among diabetic patients. |
|---|---|
| AbstractList | Early detection and precise prediction are essential in medical diagnosis, particularly for diseases such as diabetic nephropathy (DN), which tends to go undiagnosed at its early stages. Conventional diagnostic techniques may not be sensitive and timely, and hence, early intervention might be difficult. This research delves into the application of a hybrid Autoencoder-LSTM model to improve DN detection. The Autoencoder (AE) unit compresses clinical data with preservation of important features and dimensionality reduction. The Long Short-Term Memory (LSTM) network subsequently processes temporal patterns and sequential dependency, enhancing feature learning for timely diagnosis. Clinical and demographic information from diabetic patients are included in the dataset, evaluating variables such as age, sex, type of diabetes, duration of disease, smoking, and alcohol use. The model is done using Python and exhibits better performance compared to conventional methods. The Hybrid AE-LSTM model proposed here attains an accuracy of 99.2%, which is a 6.68% improvement over Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression. The findings demonstrate the power of deep learning in detecting DN early and accurately and present a novel tool for proactive disease control among diabetic patients. |
| Author | Subhas, C. Rani, U. Sudha |
| Author_xml | – sequence: 1 givenname: U. Sudha surname: Rani fullname: Rani, U. Sudha – sequence: 2 givenname: C. surname: Subhas fullname: Subhas, C. |
| BookMark | eNotkM1OwzAQhC0EEqX0DThY4pziOLGTHKO00KIWkNpK3CzH3lBXwQ5Oesjbk_7MZecwmh19D-jWOgsIPYVkGsaMZy_L97zY5FNKKJuSkBOaxjdoREPGA8YScnv2aRCS5PseTdr2QAZFGeVpNEJ2bvfSKtB4Ln3d4xl0oDrjLHYVnhlZQmcU_oBm710ju32Pd62xP1jiRV96o3F-7BxY5TT4YLXZrvF6sDWunMdFbaxRssZfHrQ5tz6iu0rWLUyud4x2r_NtsQhWn2_LIl8FiiZxF6hIJ0SmqVannYwCk1miNdFlxGXGOE15wmNdxRoIVCxOSiUzSjKgRPNSVtEYPV96G-_-jtB24uCO3g4vRRSmhA4AEjKk4ktKede2HirRePMrfS9CIs5wxQWuOMEVV7jRP3vfbxY |
| ContentType | Journal Article |
| Copyright | 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2025.0160284 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2025_0160284 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c274t-c3d70a88dc392652e5a97dd0db36a956286764df4de0ef547bca9209e20d6baf3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441764900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Fri Jul 25 21:19:56 EDT 2025 Sat Nov 29 08:14:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c274t-c3d70a88dc392652e5a97dd0db36a956286764df4de0ef547bca9209e20d6baf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3180200370?pq-origsite=%requestingapplication% |
| PQID | 3180200370 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_3180200370 crossref_primary_10_14569_IJACSA_2025_0160284 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2025 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2787051 |
| Snippet | Early detection and precise prediction are essential in medical diagnosis, particularly for diseases such as diabetic nephropathy (DN), which tends to go... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Accuracy Biomarkers Computer science Data analysis Deep learning Diabetes Diabetic nephropathy Diagnosis Disease Disease control Glucose Hyperglycemia Kidneys Machine learning Optimization techniques Patients Support vector machines |
| Title | Enhanced Early Detection of Diabetic Nephropathy Using a Hybrid Autoencoder-LSTM Model for Clinical Prediction |
| URI | https://www.proquest.com/docview/3180200370 |
| Volume | 16 |
| WOSCitedRecordID | wos001441764900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwI9bKB64WJpuTEypQxNYSsUiFS5TYjqiE0tIGJP6eGccFceHCJRdLljXP9iwZvwdwII3QgRQ5x9Ag50FZ-Jw4YbjxTaBx5XGRW57ZG9nrxf1-krqC28S1VU7vRHtR66GiGvmhT1RlxJYijkdvnFSj6O-qk9CYhXliSSDphjR8_q6xCHT-kWXixEFiMZV993oOw4bk8PKqfXrfxhzRI-rOCD1t8Ns7_b6crcc5X_7vWldgycWarN1sjlWYMdUaLE91HJg71utQdaoX2wjALN0xOzO1bdCq2LBkTcvMQLGeGZGkAkaMn8w2GrCcXXzSgy_Wfq-HRIipzZjf3D90GSmsvTKMh5njHX1l6Zh-CdGsG_B43nk4veBOh4ErzFlrrnyNaMaxVmTP0DNhnkithS78KMf8yosjGQW6RHCFKcNAFipPPJEYT-ioyEt_E-aqYWW2gIlSC4lTFRKNHeJOMCZUgTqKClHESppt4FP7Z6OGbiOjNIXwyhq8MsIrc3htw94Ugcwdvkn2Y_6dv4d3YZEmayoqezBXj9_NPiyoj3owGbdg_qTTS-9aMHstOX673m3L7i8cSS-76dMXt27WLw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RilQu0JZWPNs5tMcVW7_WPiAU8VDShAiJIOVm7N21ioSckBhQ_hS_kZm1DeLCjUPPlkZrz-d57cw3AL-UlSZQMhMUGmQiKHJfMCeMsL4NDJ08zjPHMztQw2E8HifnS_DYzsJwW2VrE52hNhPNNfJ9n6nKmC1FHk5vBW-N4tvVdoVGDYu-XTxQyjY_6B2Tfn973unJ6Kgrmq0CQlMGVgntGzpbHBtNoUEUejbMEmWMNLkfZZQteHGkosAUdFRpizBQuc4STybWkybKs8InuR_gY-DHiv-rvhLPNR3JEh3zJzlSZk1V42Zaj8KUZL_3t3N00aGc1GOq0Ig8e_DaG752Bs7Dna7_b9_mM6w1sTR2avB_gSVbfoX1dk8FNmZrA8qT8p9rdEBH54zHtnINaCVOCqxbgq41Du2UV0ZQRLxA10iBGXYXPNCGnbtqwoSfxs7E4GJ0hrxB7gYp3seGV_UGz2d85cVSv8Hlu7z1d1guJ6XdBJSFkYpE5YqUGxLSrQ11oP9EucxjrewWiFbf6bSmE0k5DWN8pDU-UsZH2uBjC3ZbjaeNcZmnL-refvvxT_jUHZ0N0kFv2N-BVRZcV492Ybma3dk9WNH31fV89sPhGOHqvcHxBAHDLsY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Early+Detection+of+Diabetic+Nephropathy+Using+a+Hybrid+Autoencoder-LSTM+Model+for+Clinical+Prediction&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Rani%2C+U.+Sudha&rft.au=Subhas%2C+C.&rft.date=2025&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=16&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2025.0160284&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2025_0160284 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |