Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases
Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increa...
Uloženo v:
| Vydáno v: | International journal of advanced computer science & applications Ročník 12; číslo 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
West Yorkshire
Science and Information (SAI) Organization Limited
2021
|
| Témata: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increase in accuracy, prediction and detection of Chronic Kidney Disease. The experimental results obtained from this work, with subjected to optimal data mining algorithms for better classification and prediction, of Chronic Kidney Disease. The result of applying relevant algorithms, like K-Nearest Neighbors, Support Vector Machine, Multi Layer Perceptron, Random Forest, are studied for both clinical and laboratory samples. Our findings show that K - Nearest Neighbour algorithm provides the best classification for clinical data and, similarly, Random Forest for laboratory samples, when compared with the performance parameters like, precision, accuracy, recall and F1 Score of other data mining analysis techniques. |
|---|---|
| AbstractList | Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increase in accuracy, prediction and detection of Chronic Kidney Disease. The experimental results obtained from this work, with subjected to optimal data mining algorithms for better classification and prediction, of Chronic Kidney Disease. The result of applying relevant algorithms, like K-Nearest Neighbors, Support Vector Machine, Multi Layer Perceptron, Random Forest, are studied for both clinical and laboratory samples. Our findings show that K - Nearest Neighbour algorithm provides the best classification for clinical data and, similarly, Random Forest for laboratory samples, when compared with the performance parameters like, precision, accuracy, recall and F1 Score of other data mining analysis techniques. |
| Author | V, Padmaja K Herle, Harsha |
| Author_xml | – sequence: 1 givenname: Harsha surname: Herle fullname: Herle, Harsha – sequence: 2 givenname: Padmaja K surname: V fullname: V, Padmaja K |
| BookMark | eNotkEtrwzAMgM3oYF3Xf7CDYed0fic5hmSPbi2DPWA34yR265LanZ0O-u-XtdVBEtKHBN81GDnvNAC3GM0w4yK_n78U5UcxI4jgGcIECZFegDHBXCScp2h07LMEo_T7Ckxj3KAhaE5ERsegeted6u2vhksdbB-hN7BSvYJL66xbwaJb-WG-3h435Tp4Zxv4alunD7CyUauo4w24NKqLenquE_D1-PBZPieLt6d5WSyShqSsT9KWIm5MTbVqaoZyjBimhimlWqOytM4QRXlNSW4EbWpcGyxaMZCaNEowpukE3J3u7oL_2evYy43fBze8lERwjvGQ-ECxE9UEH2PQRu6C3apwkBjJozJ5Uib_lcmzMvoHEItgQg |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2021.0120667 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2021_0120667 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c274t-7d305ffb3eacb40910413f4aaadfa87b80309b329f63cb1bf16d6cb4e2ca644e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686178900067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Fri Jul 25 03:24:54 EDT 2025 Sat Nov 29 02:26:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c274t-7d305ffb3eacb40910413f4aaadfa87b80309b329f63cb1bf16d6cb4e2ca644e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2655116555?pq-origsite=%requestingapplication% |
| PQID | 2655116555 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_2655116555 crossref_primary_10_14569_IJACSA_2021_0120667 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2021 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.1371222 |
| Snippet | Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Algorithms Classification Data mining Diagnosis Kidney diseases Laboratories Multilayer perceptrons Support vector machines |
| Title | Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases |
| URI | https://www.proquest.com/docview/2655116555 |
| Volume | 12 |
| WOSCitedRecordID | wos000686178900067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYWDhjXhWHlhDSZw4yYRKH-LVEvFSYYns2AYkaKEJSPx7zonLY2Fh8XLRKbrzPW3fB7Ab8EwzKX0n5IpigRJ4jnA5Q7uKmaRYZMflLd-bs7DfjwaDOLENt9xeq5z4xNJRy1FmeuQNj2Fsd3EJDl5eHYMaZU5XLYTGNMyYKQkGuiEJ7r56LPsY_Fk5iROJZoppOLCv5zBtiBvHJ83WZRNrRM_dM29IWQk2_yM6_XbOZcTpLvz3Xxdh3uaapFltjiWYUsNlWJjgOBBr1ivQrm7EvSvSw_1Y5GSkSZsXnPRK9AjSfLpH7sXDc0mx43TJ6aMcqg_Srk548lW47nauWkeORVdwMqxECyeUaOpaC4quV_gmbcB4pn3OudQ8CkVkDl8E9WLNaCZcoV0mGX6pvIxjEqXoGtSGo6FaBxL5nAplsg2W-TGNROhrimEvCDRykNkGOBOppi_VEI3UFB9GC2mlhdRoIbVa2IDtiVxTa1J5-i3Uzb_JWzBnmFV9km2oFeM3tQOz2XvxmI_rMHPY6ScXdZg-DR1ce955vdw1SEmOe8ntJ2NGxhs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhRywFfIBjgMSJkxwQqlpQSxchsai3YMc2IEELTQD1p_hGxllYLtx64JKLo5HsN543M7ZnAPY8HmsmpWv5XFEMUDzHEjZnuK9CJikG2WF2y_em7Xe7Qa8XXkzAR_kWxlyrLG1iZqjlIDY58kOHIbfb-PFOnl8s0zXKnK6WLTRytWip0TuGbMlxs4747jvO2elVrWEVXQWsGCOw1PIlqrjWgqLJEa6hS7Tj2uWcS80DXwTm0EFQJ9SMxsIW2maS4Z_KiTk6D4qi3EmYdmngm33V8q2vnM4ROhssq_yJRGqqpvq94rUeuinhYfO8WrusYkzq2AfmzSrLmtv_YMPfZJAx3NnCf1ubRZgvfGlSzZV_CSZUfxkWyj4VpDBbK1DPb_y9KdLB_ZYmZKBJnaecdLLuGKT6eIezSe-fspGiXDBpPci-GpF6foKVrML1WOayBlP9QV-tAwlcToUy3hSL3ZAGwnc1RVr3PI0SZLwBVoli9JwXCYlMcGVQj3LUI4N6VKC-AZUSx6gwGUn0DeLm38O7MNu46rSjdrPb2oI5IzjPCVVgKh2-qm2Yid_Sh2S4k2kngdtxQ_4Jieof4Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+Merits+of+Data+Mining+Algorithms+of+Chronic+Kidney+Diseases&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Herle%2C+Harsha&rft.au=Padmaja%2C+K+V&rft.date=2021&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=6&rft_id=info:doi/10.14569%2FIJACSA.2021.0120667 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |