Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases

Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced computer science & applications Ročník 12; číslo 6
Hlavní autoři: Herle, Harsha, V, Padmaja K
Médium: Journal Article
Jazyk:angličtina
Vydáno: West Yorkshire Science and Information (SAI) Organization Limited 2021
Témata:
ISSN:2158-107X, 2156-5570
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increase in accuracy, prediction and detection of Chronic Kidney Disease. The experimental results obtained from this work, with subjected to optimal data mining algorithms for better classification and prediction, of Chronic Kidney Disease. The result of applying relevant algorithms, like K-Nearest Neighbors, Support Vector Machine, Multi Layer Perceptron, Random Forest, are studied for both clinical and laboratory samples. Our findings show that K - Nearest Neighbour algorithm provides the best classification for clinical data and, similarly, Random Forest for laboratory samples, when compared with the performance parameters like, precision, accuracy, recall and F1 Score of other data mining analysis techniques.
AbstractList Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining algorithms to reveal the hidden information from clinical and laboratory samples helps physician in early diagnosis, thus contributing towards increase in accuracy, prediction and detection of Chronic Kidney Disease. The experimental results obtained from this work, with subjected to optimal data mining algorithms for better classification and prediction, of Chronic Kidney Disease. The result of applying relevant algorithms, like K-Nearest Neighbors, Support Vector Machine, Multi Layer Perceptron, Random Forest, are studied for both clinical and laboratory samples. Our findings show that K - Nearest Neighbour algorithm provides the best classification for clinical data and, similarly, Random Forest for laboratory samples, when compared with the performance parameters like, precision, accuracy, recall and F1 Score of other data mining analysis techniques.
Author V, Padmaja K
Herle, Harsha
Author_xml – sequence: 1
  givenname: Harsha
  surname: Herle
  fullname: Herle, Harsha
– sequence: 2
  givenname: Padmaja K
  surname: V
  fullname: V, Padmaja K
BookMark eNotkEtrwzAMgM3oYF3Xf7CDYed0fic5hmSPbi2DPWA34yR265LanZ0O-u-XtdVBEtKHBN81GDnvNAC3GM0w4yK_n78U5UcxI4jgGcIECZFegDHBXCScp2h07LMEo_T7Ckxj3KAhaE5ERsegeted6u2vhksdbB-hN7BSvYJL66xbwaJb-WG-3h435Tp4Zxv4alunD7CyUauo4w24NKqLenquE_D1-PBZPieLt6d5WSyShqSsT9KWIm5MTbVqaoZyjBimhimlWqOytM4QRXlNSW4EbWpcGyxaMZCaNEowpukE3J3u7oL_2evYy43fBze8lERwjvGQ-ECxE9UEH2PQRu6C3apwkBjJozJ5Uib_lcmzMvoHEItgQg
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2021.0120667
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2021_0120667
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c274t-7d305ffb3eacb40910413f4aaadfa87b80309b329f63cb1bf16d6cb4e2ca644e3
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686178900067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Fri Jul 25 03:24:54 EDT 2025
Sat Nov 29 02:26:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-7d305ffb3eacb40910413f4aaadfa87b80309b329f63cb1bf16d6cb4e2ca644e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2655116555?pq-origsite=%requestingapplication%
PQID 2655116555
PQPubID 5444811
ParticipantIDs proquest_journals_2655116555
crossref_primary_10_14569_IJACSA_2021_0120667
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2021
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.1372275
Snippet Early prediction of Chronic Kidney Disease in human subjects is considered to be a critical factor for diagnosis and treatment. The use of data mining...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Algorithms
Classification
Data mining
Diagnosis
Kidney diseases
Laboratories
Multilayer perceptrons
Support vector machines
Title Relative Merits of Data Mining Algorithms of Chronic Kidney Diseases
URI https://www.proquest.com/docview/2655116555
Volume 12
WOSCitedRecordID wos000686178900067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RwsBCeYpHqTywGkicOOmESltEgZaIh1RYIjuxoRK00AQk_j3nxOWxsLB4uciK7n1n-z6APeak0heJpJwxj3pCaNoMOaPMpBu-EpqXQ1wvgsEgHA6bkW24ZfZa5cwnFo46nSSmR37gcoztDi7-0csrNahR5nTVQmhUYN5MSTDQDZF__9VjOcTgz4tJnEg0U0yDoX09h2lD86B31mpft7BGdJ1984aUF2DzP6LTb-dcRJyT2n__dRmWbK5JWqVyrMCcGq9CbYbjQKxZr0GnvBH3rkgf9THPyESTjsgF6RfoEaT19IC754_PBcWO0yXno3SsPkinPOHJ1uH2pHvTPqUWXYEmWInmNEjR1LWWDF2v9EzagPFMo7REqkUYyNAcvkjmNjVniXSkdnjK8UvlJgKTKMU2oDqejNUmkBDrRuV5nnQxmTxMWSjQz6aoHRgIPO7xLaAzrsYv5RCN2BQfRgpxKYXYSCG2UtiC-oyvsTWpLP5m6vbf5B1YNJuVfZI6VPPpm9qFheQ9H2XTBswfdwfRVQMq5wHFte9eNgqtQUrU60d3n6ysxh4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BQYKFN-KNBxhNm9h10gGhioIofQgJkLoFO7GhErTQhKL-KX4j5zx4LGwMLFkcWXG-8313Pt8dwAFzIlWVoaKCMU65lIbWfMEos-ZGVUsjsiKuba_b9Xu92tUUvBe5MPZaZaETU0UdDUN7Rl52BXK7g4_qyfMLtV2jbHS1aKGRiUVLT97QZYuPmw3E99B1z89uTi9o3lWAhuiBJdSLUMSNUQxVjuKWLlGPG_xKGRnpe8q3QQfF3JoRLFSOMo6IBL6p3VCi8aAZzjsNM5z5nt1XLY9-nulU0NgQaeVPJFJbNdXr5dl6aKbUys3L-ul1HX1S1zmyOasibW7_jQ1_kkHKcOeL_-3fLMFCbkuTeib8yzClByuwWPSpILnaWoVGduNvrEkH91sSk6EhDZlI0km7Y5D64z2uJnl4SkfycsGk1Y8GekIaWQQrXoPbP1nLOpQGw4HeAOKjX6w558pFY7kSMV8ij0Qo_Uh0XHCxCbRAMXjOioQE1rmyqAcZ6oFFPchR34SdAscgVxlx8AXi1u_D-zB3cdNpB-1mt7UN83bi7ExoB0rJ6FXvwmw4TvrxaC-VTgJ3fw35B_kJH-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+Merits+of+Data+Mining+Algorithms+of+Chronic+Kidney+Diseases&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Herle%2C+Harsha&rft.au=V%2C+Padmaja+K&rft.date=2021&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=6&rft_id=info:doi/10.14569%2FIJACSA.2021.0120667&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2021_0120667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon