The inverse optimal value problem for linear fractional programming

We study the inverse optimal value problem for linear fractional programming, where the goal is to find the coefficients of the fractional objective function such that the resulting optimal objective function value is as close as possible to some given target value. We show that this problem is NP-h...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Operations research letters Ročník 59; s. 107251
Hlavní autori: Nadi, Sina, Lee, Taewoo, Prokopyev, Oleg A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2025
Predmet:
ISSN:0167-6377
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the inverse optimal value problem for linear fractional programming, where the goal is to find the coefficients of the fractional objective function such that the resulting optimal objective function value is as close as possible to some given target value. We show that this problem is NP-hard. Then, we provide some structural results, which are exploited to derive several reformulations and two solution algorithms. The proposed approaches are based on the Charnes-Cooper and parametric transformations.
ISSN:0167-6377
DOI:10.1016/j.orl.2025.107251