Network Security Based on Improved Genetic Algorithm and Weighted Error Back-Propagation Algorithm
In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on improved genetic algorithm and weighted error back-propagation algorithm is proposed. The model combines the dynamic error weight and adaptive...
Uloženo v:
| Vydáno v: | International journal of advanced computer science & applications Ročník 15; číslo 11 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
West Yorkshire
Science and Information (SAI) Organization Limited
2024
|
| Témata: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on improved genetic algorithm and weighted error back-propagation algorithm is proposed. The model combines the dynamic error weight and adaptive learning rate of the weighted error back-propagation algorithm to improve the learning ability of the model in dealing with classification imbalance and dynamic attack mode. In addition, the global search capability of genetic algorithm is utilized to optimize the feature selection process and automatically adjust the hyperparameter settings. The experimental results show that the proposed model has an average accuracy of 96.7%, a recall rate of 93.3% and an F1 value of 0.91 on the CIC-IDS-2017 dataset, which has significant advantages over traditional detection methods. In many experiments, the accuracy of normal data is up to 99.97%, the accuracy of known abnormal behavior data is 99.31%, and the accuracy of unknown abnormal behavior data is 98.13%. These results show that this method has high efficiency and reliability when dealing with complex network traffic, and provides a new idea and method for network security protection research. |
|---|---|
| AbstractList | In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on improved genetic algorithm and weighted error back-propagation algorithm is proposed. The model combines the dynamic error weight and adaptive learning rate of the weighted error back-propagation algorithm to improve the learning ability of the model in dealing with classification imbalance and dynamic attack mode. In addition, the global search capability of genetic algorithm is utilized to optimize the feature selection process and automatically adjust the hyperparameter settings. The experimental results show that the proposed model has an average accuracy of 96.7%, a recall rate of 93.3% and an F1 value of 0.91 on the CIC-IDS-2017 dataset, which has significant advantages over traditional detection methods. In many experiments, the accuracy of normal data is up to 99.97%, the accuracy of known abnormal behavior data is 99.31%, and the accuracy of unknown abnormal behavior data is 98.13%. These results show that this method has high efficiency and reliability when dealing with complex network traffic, and provides a new idea and method for network security protection research. |
| Author | Liang, Junjuan |
| Author_xml | – sequence: 1 givenname: Junjuan surname: Liang fullname: Liang, Junjuan |
| BookMark | eNo9kNtOAjEQhhuDiYi8gRebeL3Ybg_bXq4EAUPUBI3eNT0tLIctdhcNb28F4tzMJPP_c_iuQaf2tQPgFsEBIpSJ--lTMZwXgwxmZAARRShDF6CbIcpSSnPYOdY8RTD_vAL9plnBGFhkjOMu0M-u_fFhncyd2YeqPSQPqnE28XUy3e6C_4712NWurUxSbBY-SpbbRNU2-XDVYtnG9igEH6LNrNPX4Hdqodoq2v_VN-CyVJvG9c-5B94fR2_DSTp7GU-HxSw1WU7alDDIXF4aYSnFXHCrtM2EtnlJEcXxVWEQMSRHTlvEEdSaaM6otiXXGtMS98DdaW48-2vvmlau_D7UcaWM9lwwIpiIKnJSmeCbJrhS7kK1VeEgEZRHoPIEVP4BlWeg-BcgemtB |
| ContentType | Journal Article |
| Copyright | 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2024.0151121 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2024_0151121 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c274t-4606e7fc9d553898dabd29bd7f51531459c14c471ebd1810bb4b865bdf8bb35f3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sat Nov 01 15:22:53 EDT 2025 Sat Nov 29 02:26:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c274t-4606e7fc9d553898dabd29bd7f51531459c14c471ebd1810bb4b865bdf8bb35f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3147964969?pq-origsite=%requestingapplication% |
| PQID | 3147964969 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_3147964969 crossref_primary_10_14569_IJACSA_2024_0151121 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2024 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2428553 |
| Snippet | In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Accuracy Adaptive algorithms Adaptive learning Artificial intelligence Back propagation Clustering Communications traffic Computer science Data integrity Efficiency Errors Experiments Feature selection Genetic algorithms Machine learning Network reliability Neural networks Optimization Propagation Propagation modes Resource management Security |
| Title | Network Security Based on Improved Genetic Algorithm and Weighted Error Back-Propagation Algorithm |
| URI | https://www.proquest.com/docview/3147964969 |
| Volume | 15 |
| WOSCitedRecordID | wos001378214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB3RlgMXdkRZKh-4mjZbE59QqYpYRIlYROESeUtBQApp4PsZJy4VFy5cokiTOImfPW9mYs8AHITcEZ7GwWsSnVBfOx4VWkna9UUkBNdIkWlZbCIcDqPRiMU24Da1yypnOrFU1GoiTYy87Tm-2TXJuuzo_YOaqlHm76otoVGDhsmSYEo3xMHjT4ylg-TfLTNxotBkMQ1Hdvccmg2sfXbe69_00Ed0_UNkRbQ8nN_s9Fs5l4xzsvLfd12FZWtrkl41ONZgQWfrsDKr40DstN4AMazWgpMbW8yOHCO3KTLJSBVzwHOTnhqbIb3XMT6peHojPFPkvgysoniQ55Mcb5MvNM7RDx-XgM-v3oS7k8Ft_5Ta2gtUop9aUB8dGx2mkqkAVSKLFBfKZUKFKRpA-H0Bk44vkdm0UGgkdIRAcLuBUClC7AWptwX1bJLpbSCc--h0ydQVjvBlR3KXRx0hVYS-WciZaAKd9XnyXqXYSIxrYjBKKowSg1FiMWrC3qzXEzvhpsm8y3f-Fu_CkmmsiqLsQb3IP_U-LMqv4nmat6BxPBjG1y2oXYQUj5fuVascUyiJzy7jh2_a8dLY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR-z4AEdDk7hNfECobKIUqkoF0VvwFkBAAmkB8VN8I-MsVL1w48AtkhPHzjzPm5nYMwDbvnCkZxC8NtEJZcbxqDRa0RqTgZTCIEVGWbEJv9UKul3eHoGv8iyM3VZZ6sRMUetE2Rj5nucwe2qS1_jByyu1VaPs39WyhEYOi6b5_ECXrbffOEb57rju6cnV0RktqgpQhR5YnzI02Y0fKa6ruNh5oIXULpfaj5Da8S1VrhymUGcbqZH-KlLisGtVqSMcvFeNPOx3FMaZF_h2XTV9-hPTqaCxUcsyfyKR2qypfrc4rYdmCt9rnNePOnX0SV22iyyMlo4zzIbDZJAx3OnMf_s2szBd2NKknoN_DkZMPA8zZZ0KUqitBZCtfK876RTF-sghcrcmSUzymApe2_Tb2A2pP93hzPr3z0TEmtxkgWNsPknTJMXH1CNtpwkq4QzQg7sX4fpPZroEY3ESm2UgQjB0KlXkSkcyVVHCFUFFKh2g7-kLLleAljIOX_IUIqF1vSwmwhwTocVEWGBiBdZLKYeFQumFAxGv_t68BZNnV5cX4UWj1VyDKdtxHjFah7F--mY2YEK99x966WaGXQK3fw2IbxyaKtw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Security+Based+on+Improved+Genetic+Algorithm+and+Weighted+Error+Back-Propagation+Algorithm&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Liang%2C+Junjuan&rft.date=2024&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=15&rft.issue=11&rft_id=info:doi/10.14569%2FIJACSA.2024.0151121&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2024_0151121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |