Network Security Based on Improved Genetic Algorithm and Weighted Error Back-Propagation Algorithm

In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on improved genetic algorithm and weighted error back-propagation algorithm is proposed. The model combines the dynamic error weight and adaptive...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced computer science & applications Ročník 15; číslo 11
Hlavní autor: Liang, Junjuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: West Yorkshire Science and Information (SAI) Organization Limited 2024
Témata:
ISSN:2158-107X, 2156-5570
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on improved genetic algorithm and weighted error back-propagation algorithm is proposed. The model combines the dynamic error weight and adaptive learning rate of the weighted error back-propagation algorithm to improve the learning ability of the model in dealing with classification imbalance and dynamic attack mode. In addition, the global search capability of genetic algorithm is utilized to optimize the feature selection process and automatically adjust the hyperparameter settings. The experimental results show that the proposed model has an average accuracy of 96.7%, a recall rate of 93.3% and an F1 value of 0.91 on the CIC-IDS-2017 dataset, which has significant advantages over traditional detection methods. In many experiments, the accuracy of normal data is up to 99.97%, the accuracy of known abnormal behavior data is 99.31%, and the accuracy of unknown abnormal behavior data is 98.13%. These results show that this method has high efficiency and reliability when dealing with complex network traffic, and provides a new idea and method for network security protection research.
AbstractList In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on improved genetic algorithm and weighted error back-propagation algorithm is proposed. The model combines the dynamic error weight and adaptive learning rate of the weighted error back-propagation algorithm to improve the learning ability of the model in dealing with classification imbalance and dynamic attack mode. In addition, the global search capability of genetic algorithm is utilized to optimize the feature selection process and automatically adjust the hyperparameter settings. The experimental results show that the proposed model has an average accuracy of 96.7%, a recall rate of 93.3% and an F1 value of 0.91 on the CIC-IDS-2017 dataset, which has significant advantages over traditional detection methods. In many experiments, the accuracy of normal data is up to 99.97%, the accuracy of known abnormal behavior data is 99.31%, and the accuracy of unknown abnormal behavior data is 98.13%. These results show that this method has high efficiency and reliability when dealing with complex network traffic, and provides a new idea and method for network security protection research.
Author Liang, Junjuan
Author_xml – sequence: 1
  givenname: Junjuan
  surname: Liang
  fullname: Liang, Junjuan
BookMark eNo9kNtOAjEQhhuDiYi8gRebeL3Ybg_bXq4EAUPUBI3eNT0tLIctdhcNb28F4tzMJPP_c_iuQaf2tQPgFsEBIpSJ--lTMZwXgwxmZAARRShDF6CbIcpSSnPYOdY8RTD_vAL9plnBGFhkjOMu0M-u_fFhncyd2YeqPSQPqnE28XUy3e6C_4712NWurUxSbBY-SpbbRNU2-XDVYtnG9igEH6LNrNPX4Hdqodoq2v_VN-CyVJvG9c-5B94fR2_DSTp7GU-HxSw1WU7alDDIXF4aYSnFXHCrtM2EtnlJEcXxVWEQMSRHTlvEEdSaaM6otiXXGtMS98DdaW48-2vvmlau_D7UcaWM9lwwIpiIKnJSmeCbJrhS7kK1VeEgEZRHoPIEVP4BlWeg-BcgemtB
ContentType Journal Article
Copyright 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2024.0151121
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2024_0151121
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c274t-4606e7fc9d553898dabd29bd7f51531459c14c471ebd1810bb4b865bdf8bb35f3
IEDL.DBID P5Z
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001378214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Sat Nov 01 15:22:53 EDT 2025
Sat Nov 29 02:26:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-4606e7fc9d553898dabd29bd7f51531459c14c471ebd1810bb4b865bdf8bb35f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3147964969?pq-origsite=%requestingapplication%
PQID 3147964969
PQPubID 5444811
ParticipantIDs proquest_journals_3147964969
crossref_primary_10_14569_IJACSA_2024_0151121
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2024
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2428553
Snippet In order to solve the problem of feature selection and local optimal solution in the field of network security, a network security protection model based on...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Accuracy
Adaptive algorithms
Adaptive learning
Artificial intelligence
Back propagation
Clustering
Communications traffic
Computer science
Data integrity
Efficiency
Errors
Experiments
Feature selection
Genetic algorithms
Machine learning
Network reliability
Neural networks
Optimization
Propagation
Propagation modes
Resource management
Security
Title Network Security Based on Improved Genetic Algorithm and Weighted Error Back-Propagation Algorithm
URI https://www.proquest.com/docview/3147964969
Volume 15
WOSCitedRecordID wos001378214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB3RlgMXdkRZKh-4mjZbE59QqYpYRIlYROESeUtBQApp4PsZJy4VFy5cokiTOImfPW9mYs8AHITcEZ7GwWsSnVBfOx4VWkna9UUkBNdIkWlZbCIcDqPRiMU24Da1yypnOrFU1GoiTYy87Tm-2TXJuuzo_YOaqlHm76otoVGDhsmSYEo3xMHjT4ylg-TfLTNxotBkMQ1Hdvccmg2sfXbe69_00Ed0_UNkRbQ8nN_s9Fs5l4xzsvLfd12FZWtrkl41ONZgQWfrsDKr40DstN4AMazWgpMbW8yOHCO3KTLJSBVzwHOTnhqbIb3XMT6peHojPFPkvgysoniQ55Mcb5MvNM7RDx-XgM-v3oS7k8Ft_5Ta2gtUop9aUB8dGx2mkqkAVSKLFBfKZUKFKRpA-H0Bk44vkdm0UGgkdIRAcLuBUClC7AWptwX1bJLpbSCc--h0ydQVjvBlR3KXRx0hVYS-WciZaAKd9XnyXqXYSIxrYjBKKowSg1FiMWrC3qzXEzvhpsm8y3f-Fu_CkmmsiqLsQb3IP_U-LMqv4nmat6BxPBjG1y2oXYQUj5fuVascUyiJzy7jh2_a8dLY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR-z4AEdDk7hNfECobKIUqkoF0VvwFkBAAmkB8VN8I-MsVL1w48AtkhPHzjzPm5nYMwDbvnCkZxC8NtEJZcbxqDRa0RqTgZTCIEVGWbEJv9UKul3eHoGv8iyM3VZZ6sRMUetE2Rj5nucwe2qS1_jByyu1VaPs39WyhEYOi6b5_ECXrbffOEb57rju6cnV0RktqgpQhR5YnzI02Y0fKa6ruNh5oIXULpfaj5Da8S1VrhymUGcbqZH-KlLisGtVqSMcvFeNPOx3FMaZF_h2XTV9-hPTqaCxUcsyfyKR2qypfrc4rYdmCt9rnNePOnX0SV22iyyMlo4zzIbDZJAx3OnMf_s2szBd2NKknoN_DkZMPA8zZZ0KUqitBZCtfK876RTF-sghcrcmSUzymApe2_Tb2A2pP93hzPr3z0TEmtxkgWNsPknTJMXH1CNtpwkq4QzQg7sX4fpPZroEY3ESm2UgQjB0KlXkSkcyVVHCFUFFKh2g7-kLLleAljIOX_IUIqF1vSwmwhwTocVEWGBiBdZLKYeFQumFAxGv_t68BZNnV5cX4UWj1VyDKdtxHjFah7F--mY2YEK99x966WaGXQK3fw2IbxyaKtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Security+Based+on+Improved+Genetic+Algorithm+and+Weighted+Error+Back-Propagation+Algorithm&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Liang%2C+Junjuan&rft.date=2024&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=15&rft.issue=11&rft_id=info:doi/10.14569%2FIJACSA.2024.0151121&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2024_0151121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon