MSSL: Hyperspectral and Panchromatic Images Fusion via Multiresolution Spatial-Spectral Feature Learning Networks

The fusion of hyperspectral (HS) and panchromatic (PAN) images aims to generate a fused HS image that combines spectral information of the HS image with spatial information of the PAN image. In this article, we propose a multiresolution spatial-spectral feature learning (MSSL) framework for fusing H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 60; S. 1 - 13
Hauptverfasser: Qu, Jiahui, Shi, Yanzi, Xie, Weiying, Li, Yunsong, Wu, Xianyun, Du, Qian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The fusion of hyperspectral (HS) and panchromatic (PAN) images aims to generate a fused HS image that combines spectral information of the HS image with spatial information of the PAN image. In this article, we propose a multiresolution spatial-spectral feature learning (MSSL) framework for fusing HS and PAN images. The proposed MSSL transforms the existing deep and complex network into several simple and shallow subnetworks to simplify the feature learning process. MSSL upsamples the HS image while downsamples the PAN image and designs multiresolution 3-D convolutional autoencoder (CAEs) networks with a spectral constraint to learn complete spatial-spectral features of the HS image. MSSL designs multiresolution 2-D CAEs with spatial constraint to extract spatial features of the PAN image, with a low computational cost. In order to effectively generate the pansharpened HS image with high spatial and spectral fidelity, a multiresolution residual network is presented to reconstruct the HS image from the extracted spatial-spectral features. Extensive experiments are conducted on three widely used remote sensing data sets in comparison with state-of-the-art HS image fusion methods, demonstrating the superiority of the proposed MSSL method. Code is available at https://github.com/Jiahuiqu/MSSL .
AbstractList The fusion of hyperspectral (HS) and panchromatic (PAN) images aims to generate a fused HS image that combines spectral information of the HS image with spatial information of the PAN image. In this article, we propose a multiresolution spatial–spectral feature learning (MSSL) framework for fusing HS and PAN images. The proposed MSSL transforms the existing deep and complex network into several simple and shallow subnetworks to simplify the feature learning process. MSSL upsamples the HS image while downsamples the PAN image and designs multiresolution 3-D convolutional autoencoder (CAEs) networks with a spectral constraint to learn complete spatial–spectral features of the HS image. MSSL designs multiresolution 2-D CAEs with spatial constraint to extract spatial features of the PAN image, with a low computational cost. In order to effectively generate the pansharpened HS image with high spatial and spectral fidelity, a multiresolution residual network is presented to reconstruct the HS image from the extracted spatial–spectral features. Extensive experiments are conducted on three widely used remote sensing data sets in comparison with state-of-the-art HS image fusion methods, demonstrating the superiority of the proposed MSSL method. Code is available at https://github.com/Jiahuiqu/MSSL .
Author Qu, Jiahui
Shi, Yanzi
Xie, Weiying
Li, Yunsong
Wu, Xianyun
Du, Qian
Author_xml – sequence: 1
  givenname: Jiahui
  orcidid: 0000-0002-3925-2884
  surname: Qu
  fullname: Qu, Jiahui
  email: jhqu@xidian.edu.cn
  organization: State Key Laboratory of Integrated Service Network, Xidian University, Xi'an, China
– sequence: 2
  givenname: Yanzi
  orcidid: 0000-0002-7717-985X
  surname: Shi
  fullname: Shi, Yanzi
  email: yzshi_xidian@163.com
  organization: State Key Laboratory of Integrated Service Network, Xidian University, Xi'an, China
– sequence: 3
  givenname: Weiying
  orcidid: 0000-0001-8310-024X
  surname: Xie
  fullname: Xie, Weiying
  email: wyxie@xidian.edu.cn
  organization: State Key Laboratory of Integrated Service Network, Xidian University, Xi'an, China
– sequence: 4
  givenname: Yunsong
  orcidid: 0000-0002-0234-6270
  surname: Li
  fullname: Li, Yunsong
  email: ysli@mail.xidian.edu.cn
  organization: State Key Laboratory of Integrated Service Network, Xidian University, Xi'an, China
– sequence: 5
  givenname: Xianyun
  orcidid: 0000-0002-4450-3801
  surname: Wu
  fullname: Wu, Xianyun
  email: xywu@mail.xidian.edu.cn
  organization: State Key Laboratory of Integrated Service Network, Xidian University, Xi'an, China
– sequence: 6
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Department of Electronic and Computer Engineering, Mississippi State University, Starkville, MS, USA
BookMark eNp9kMFOwzAQRC0EEqXwAYiLJc4pXttxEm4IUUBqARE4R467LS5pEmwHxN-TqMCBA6eVRvNmNXNAduumRkKOgU0AWHb2dP2YTzjjMBFMKZHIHTKCOE4jpqTcJSMGmYp4mvF9cuD9mjGQMSQj8jbP89k5vfls0fkWTXC6orpe0AddmxfXbHSwht5u9Ao9nXbeNjV9t5rOuypYh76pujBoedsbdRXlPxlT1KFzSGeoXW3rFb3D8NG4V39I9pa68nj0fcfkeXr1dHkTze6vby8vZpHhiQyR0CzlpVJZ3yYVmElUUpWgMobIRclKWcYGYGnKRQqx5qbXJI85clzoZanFmJxuc1vXvHXoQ7FuOlf3LwuugEHC0kT0rmTrMq7x3uGyMDbooVLfwlYFsGLYtxj2LYZ9i-99exL-kK2zG-0-_2VOtoxFxF9_JlLFJYgvqCiJoQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_LGRS_2021_3094216
crossref_primary_10_1109_JAS_2023_123681
crossref_primary_10_1109_TGRS_2022_3189624
crossref_primary_10_3390_rs13183674
crossref_primary_10_1109_TGRS_2025_3583877
crossref_primary_10_1109_TGRS_2025_3592011
crossref_primary_10_1109_JSTARS_2022_3220974
crossref_primary_10_1109_TGRS_2021_3133670
crossref_primary_10_3390_rs17111947
crossref_primary_10_1109_TGRS_2022_3146296
crossref_primary_10_1109_MGRS_2024_3495516
crossref_primary_10_1109_TGRS_2023_3339337
crossref_primary_10_1109_TGRS_2022_3224480
crossref_primary_10_1109_TGRS_2024_3500036
crossref_primary_10_1109_MGRS_2024_3509139
crossref_primary_10_3390_rs15112853
crossref_primary_10_1109_TGRS_2023_3244992
Cites_doi 10.14358/PERS.72.5.591
10.1109/TII.2020.3024578
10.1109/TPAMI.2015.2439281
10.1109/LGRS.2017.2736020
10.1109/LGRS.2018.2878773
10.1109/TGRS.2020.2966550
10.1007/978-1-4612-2544-7_17
10.1109/TGRS.2007.901007
10.1109/34.192463
10.1109/LGRS.2013.2281996
10.1109/TPAMI.2016.2644615
10.1109/TGRS.2019.2917759
10.1109/LGRS.2017.2751559
10.1109/TIP.2015.2458572
10.1109/TGRS.2014.2361734
10.1109/JSTARS.2015.2420582
10.1109/TGRS.2008.916211
10.1109/TGRS.2014.2375320
10.1109/TGRS.2019.2960391
10.1111/j.1477-9730.2006.00353.x
10.1109/TGRS.2007.904923
10.1109/JSTSP.2015.2407855
10.1109/TGRS.2007.912448
10.1109/LGRS.2017.2668299
10.1109/TGRS.2019.2949082
10.7551/mitpress/7503.003.0024
10.1109/TCOM.1983.1095851
10.1080/014311600750037499
10.1016/j.rse.2002.08.002
10.1109/78.157290
10.1109/TGRS.2011.2161320
10.3390/rs8070594
10.1016/S1566-2535(01)00036-7
10.1109/TGRS.2020.2982940
10.1109/TGRS.2020.2965961
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3066374
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2021_3066374
9386241
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61571345; 91538101; 61501346; 61502367; 61701360
  funderid: 10.13039/501100001809
– fundername: Open Fund of Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education
  grantid: GTYR201904
– fundername: Ten Thousand Talent Program of the Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2016JQ6023
  funderid: 10.13039/501100017596
– fundername: Supported by Yangtze River Scholar Bonus Schemes of China
  grantid: CJT160102
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B08038
  funderid: 10.13039/501100013314
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c274t-3a082b66966383e94e646b1690ee23b0b4b5c11fcbd815a2c3b04252e2edafba3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:28 EDT 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 02:50:12 EST 2025
Wed Aug 27 05:07:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c274t-3a082b66966383e94e646b1690ee23b0b4b5c11fcbd815a2c3b04252e2edafba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0234-6270
0000-0002-4450-3801
0000-0001-8354-7500
0000-0002-3925-2884
0000-0002-7717-985X
0000-0001-8310-024X
PQID 2610170873
PQPubID 85465
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3066374
crossref_primary_10_1109_TGRS_2021_3066374
proquest_journals_2610170873
ieee_primary_9386241
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref14
ref36
Shettigara (ref10) 1992; 58
ref31
ref30
ref11
ref33
ref32
ref2
ref1
Chavez (ref9) 1989; 55
ref17
ref16
ref19
ref18
Laben (ref12) 2000
Wald (ref39)
ref24
ref23
ref26
ref25
ref20
Yuhas (ref37)
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
Wald (ref38) 1997; 63
ref5
ref40
References_xml – ident: ref21
  doi: 10.14358/PERS.72.5.591
– ident: ref29
  doi: 10.1109/TII.2020.3024578
– ident: ref32
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref34
  doi: 10.1109/LGRS.2017.2736020
– ident: ref31
  doi: 10.1109/LGRS.2018.2878773
– ident: ref15
  doi: 10.1109/TGRS.2020.2966550
– volume: 63
  start-page: 691
  issue: 6
  year: 1997
  ident: ref38
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref17
  doi: 10.1007/978-1-4612-2544-7_17
– ident: ref13
  doi: 10.1109/TGRS.2007.901007
– ident: ref16
  doi: 10.1109/34.192463
– volume: 55
  start-page: 339
  issue: 3
  year: 1989
  ident: ref9
  article-title: Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref22
  doi: 10.1109/LGRS.2013.2281996
– volume-title: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening
  year: 2000
  ident: ref12
– ident: ref30
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref41
  doi: 10.1109/TGRS.2019.2917759
– ident: ref5
  doi: 10.1109/LGRS.2017.2751559
– ident: ref26
  doi: 10.1109/TIP.2015.2458572
– ident: ref8
  doi: 10.1109/TGRS.2014.2361734
– ident: ref40
  doi: 10.1109/JSTARS.2015.2420582
– ident: ref11
  doi: 10.1109/TGRS.2008.916211
– ident: ref25
  doi: 10.1109/TGRS.2014.2375320
– ident: ref4
  doi: 10.1109/TGRS.2019.2960391
– ident: ref2
  doi: 10.1111/j.1477-9730.2006.00353.x
– ident: ref23
  doi: 10.1109/TGRS.2007.904923
– ident: ref24
  doi: 10.1109/JSTSP.2015.2407855
– ident: ref14
  doi: 10.1109/TGRS.2007.912448
– ident: ref35
  doi: 10.1109/LGRS.2017.2668299
– start-page: 99
  volume-title: Proc. Int. Conf. Fusion Earth Data.
  ident: ref39
  article-title: Quality of high resolution synthesised images: Is there a simple criterion?
– ident: ref6
  doi: 10.1109/TGRS.2019.2949082
– ident: ref36
  doi: 10.7551/mitpress/7503.003.0024
– ident: ref19
  doi: 10.1109/TCOM.1983.1095851
– ident: ref20
  doi: 10.1080/014311600750037499
– start-page: 147
  volume-title: Proc. 3rd Annu. JPL Airborne Geosci. Workshop
  ident: ref37
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
– ident: ref1
  doi: 10.1016/j.rse.2002.08.002
– ident: ref18
  doi: 10.1109/78.157290
– ident: ref27
  doi: 10.1109/TGRS.2011.2161320
– ident: ref33
  doi: 10.3390/rs8070594
– ident: ref7
  doi: 10.1016/S1566-2535(01)00036-7
– ident: ref28
  doi: 10.1109/TGRS.2020.2982940
– ident: ref3
  doi: 10.1109/TGRS.2020.2965961
– volume: 58
  start-page: 561
  issue: 5
  year: 1992
  ident: ref10
  article-title: A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set
  publication-title: Photogram. Eng. Remote Sens.
SSID ssj0014517
Score 2.4746225
Snippet The fusion of hyperspectral (HS) and panchromatic (PAN) images aims to generate a fused HS image that combines spectral information of the HS image with...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bayes methods
Computer applications
Computer vision
Convolutional autoencoder (CAE)
Data mining
Feature extraction
hyperspectral (HS) pansharpening
image fusion
Image processing
Image reconstruction
Image resolution
Learning
multiresolution
Pansharpening
Remote sensing
Spatial data
Spatial discrimination learning
Spatial resolution
spatial–spectral feature
Spectra
Title MSSL: Hyperspectral and Panchromatic Images Fusion via Multiresolution Spatial-Spectral Feature Learning Networks
URI https://ieeexplore.ieee.org/document/9386241
https://www.proquest.com/docview/2610170873
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UFPTgo1WsL_bgSdyad7LeRKwKWsQq9Bb2FS1oq0nr73d2sy2KIngLIRtCvtnd-Wb2mwE4NB2sQ49H1BOK0aiQjHLFCyqUCfOjh1LEhW02kXa7Wb_P7ubgeKaF0Vrbw2e6bS5tLl-N5MSEyk5YaOQMyHXm0zSptVqzjEEU-04anVAkEYHLYPoeO3m4vO8hEwz8dmg22DT6tgfZpio_VmK7vXTW_vdh67Dq3EhyVuO-AXN62ICVL8UFG7BkD3fKqgnvt73ezSm5QspZKytLHMqHitwh5M_lyFZtJdevuLRUpDMx8TPyMeDEinORjjvrJKZ9MZor7U3fYfzHSamJK9L6RLr1ofJqEx47Fw_nV9S1WqASaemYhhxdAZEkSH6QsmoW6SRKhEmhaR2EwhORiKXvF1KozI95IPEezvZABxqRFTzcgoXhaKi3gWRxkfFUJsrLZMR8JTjyYI6IhDJTXsJa4E1_fi5dHXLTDuMlt3zEY7nBKzd45Q6vFhzNhrzVRTj-erhpAJo96LBpwd4U4dxN0ypH-mjqB6G57vw-aheWA6N3sDGXPVgYlxO9D4vyYzyoygNrgZ9ej9l7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hHiocCuWhhuceekJdsrbXjpdbVTUEESLUBImbtS8DEk1aO-H3M7veRFRUlbhZltey_M3uzjez3wzAF9fBOmGSU6aMoLzUgkojS6qMC_Ojh1KmpW820RkM8rs7cbMEXxdaGGutP3xmz9ylz-WbiZ65UFlbJE7OgFxnJeU8Zo1aa5Ez4GkUxNEZRRoRhxxmxER7dPFziFwwjs4St8V2-F-7kG-r8mYt9htMd_N9n7YFH4MjSb41yH-CJTveho1X5QW3Yc0f79T1Dvy5Hg7756SHpLPRVlY4VI4NuUHQH6qJr9tKLn_h4lKT7sxF0MjzoyRenouEPNgncQ2M0WDpcP4O50HOKktCmdZ7MmiOlde7cNv9Mfreo6HZAtVITKc0kegMqCxD-oOk1QpuM54pl0SzNk4UU1ylOopKrUwepTLWeA_ne2xji9gqmezB8ngytp-B5GmZy47ODMs1F5FREpmwREQSnRuWiRaw-c8vdKhE7hpiPBWekTBROLwKh1cR8GrB6WLI76YMx_8e3nEALR4M2LTgcI5wESZqXSCBdBWE0GD3_z3qBD70Rtf9on85uDqA9dipH3wE5hCWp9XMHsGqfp4-1tWxt8YX1RDcwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSSL%3A+Hyperspectral+and+Panchromatic+Images+Fusion+via+Multiresolution+Spatial-Spectral+Feature+Learning+Networks&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Qu%2C+Jiahui&rft.au=Shi%2C+Yanzi&rft.au=Xie%2C+Weiying&rft.au=Li%2C+Yunsong&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2021.3066374&rft.externalDocID=9386241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon