LAENet: Light-weight asymmetric encoder-decoder network for semantic segmentation

Encode-decoder structure is used in deep learning for real-time dense segmentation task. On account of the limitation of calculation burden on mobile devices, we present a light-weight asymmetric encoder-decoder network in this paper, namely LAENet, which quickly and efficiently accomplish the task...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of physics. Conference series Ročník 1966; číslo 1; s. 12047 - 12053
Hlavní autoři: Hong, Liangyi, Duan, Shukai, Wang, Lidan, Pan, Yongbin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.07.2021
Témata:
ISSN:1742-6588, 1742-6596
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Encode-decoder structure is used in deep learning for real-time dense segmentation task. On account of the limitation of calculation burden on mobile devices, we present a light-weight asymmetric encoder-decoder network in this paper, namely LAENet, which quickly and efficiently accomplish the task of real-time semantic segmentation. We employ an asymmetric convolution and group convolution structure combined with dilated convolution and dense connectivity to reduce computation cost and model size, which can guarantee adequate receptive field and enhance the model learning ability in encoder. On the other hand, feature pyramid networks (FPN) structure combine attention mechanism and ECRE block are utilized in the decoder to strike a balance between the network complexity and segmentation performance. Our approach achieves only have 0.84M parameters, and is able to reach 66 FPS in a single GTX 1080Ti GPU. Experiments on Cityscapes datasets demonstrate that superior performance of LAENet is better than the existing segmentation network, in terms of speed and accuracy trade-off without any post-processing.
AbstractList Encode-decoder structure is used in deep learning for real-time dense segmentation task. On account of the limitation of calculation burden on mobile devices, we present a light-weight asymmetric encoder-decoder network in this paper, namely LAENet, which quickly and efficiently accomplish the task of real-time semantic segmentation. We employ an asymmetric convolution and group convolution structure combined with dilated convolution and dense connectivity to reduce computation cost and model size, which can guarantee adequate receptive field and enhance the model learning ability in encoder. On the other hand, feature pyramid networks (FPN) structure combine attention mechanism and ECRE block are utilized in the decoder to strike a balance between the network complexity and segmentation performance. Our approach achieves only have 0.84M parameters, and is able to reach 66 FPS in a single GTX 1080Ti GPU. Experiments on Cityscapes datasets demonstrate that superior performance of LAENet is better than the existing segmentation network, in terms of speed and accuracy trade-off without any post-processing.
Author Hong, Liangyi
Pan, Yongbin
Duan, Shukai
Wang, Lidan
Author_xml – sequence: 1
  givenname: Liangyi
  surname: Hong
  fullname: Hong, Liangyi
  organization: Chongqing Brain Science Collaborative Innovation Center , China
– sequence: 2
  givenname: Shukai
  surname: Duan
  fullname: Duan, Shukai
  organization: Chongqing Brain Science Collaborative Innovation Center , China
– sequence: 3
  givenname: Lidan
  surname: Wang
  fullname: Wang, Lidan
  organization: Chongqing Brain Science Collaborative Innovation Center , China
– sequence: 4
  givenname: Yongbin
  surname: Pan
  fullname: Pan, Yongbin
  organization: Chongqing Brain Science Collaborative Innovation Center , China
BookMark eNqFkF1LwzAUhoNMcE5_gwXvhLqkaT7m3Rjzi-IH6nVom9PZaZOZZIz9e1srE0HwXJw3kOecA88hGhhrAKETgs8JlnJMRJrEnE34mEx428aYJDgVe2i4-xns3lIeoEPvlxjTtsQQPWbT-R2EiyirF68h3kAXUe63TQPB1WUEprQaXKzhKyMDYWPdW1RZF3lochNayMOiARPyUFtzhPar_N3D8XeO0Mvl_Hl2HWf3VzezaRaXiUhFzLQEygmVrADGWYGTAgRjUhcYJppqzasUlzhPRUllKgkUvCC6KjRlGBdc0hE67feunP1Ygw9qadfOtCdVwhjmEgvaUaKnSme9d1Cplaub3G0VwarzpzozqrOkOn-KqN5fO3nWT9Z29bP69mH29BtUK121MP0D_u_EJ8clgZ0
Cites_doi 10.1109/TIP.2020.3042065
10.1109/TPAMI.2017.2699184
10.3390/app10031166
10.1109/5.726791
10.1109/TPAMI.2016.2644615
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1966/1/012047
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1966_1_012047
JPCS_1966_1_012047
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2747-5d8e361385be565b02be7558db0e9d3dd6f40c0a47c38481eb6b1dfbd3500b683
IEDL.DBID P5Z
ISSN 1742-6588
IngestDate Sun Jul 13 04:42:19 EDT 2025
Sat Nov 29 03:39:13 EST 2025
Wed Aug 21 03:31:15 EDT 2024
Tue Aug 20 22:16:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2747-5d8e361385be565b02be7558db0e9d3dd6f40c0a47c38481eb6b1dfbd3500b683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2550680738?pq-origsite=%requestingapplication%
PQID 2550680738
PQPubID 4998668
PageCount 7
ParticipantIDs iop_journals_10_1088_1742_6596_1966_1_012047
proquest_journals_2550680738
crossref_primary_10_1088_1742_6596_1966_1_012047
PublicationCentury 2000
PublicationDate 20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 20210701
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Zhao (JPCS_1966_1_012047bib17) 2017
Jiang (JPCS_1966_1_012047bib6) 2020; 10
Ronneberger (JPCS_1966_1_012047bib16) 2015
Mehta (JPCS_1966_1_012047bib13) 2018
Zhang (JPCS_1966_1_012047bib14) 2018
Simonyan (JPCS_1966_1_012047bib3) 2014
He (JPCS_1966_1_012047bib4) 2016
Howard (JPCS_1966_1_012047bib12) 2017
Chen (JPCS_1966_1_012047bib5) 2017; 40
Badrinarayanan (JPCS_1966_1_012047bib18) 2017; 39
Lo (JPCS_1966_1_012047bib20) 2019
Yu (JPCS_1966_1_012047bib21) 2015
LeCun (JPCS_1966_1_012047bib1) 1998; 86
Zhao (JPCS_1966_1_012047bib8) 2018
Krizhevsky (JPCS_1966_1_012047bib2) 2012; 25
Qi-chuan (JPCS_1966_1_012047bib7) 2020; 41
Zhang (JPCS_1966_1_012047bib10) 2018
Cordts (JPCS_1966_1_012047bib11) 2016
Wu (JPCS_1966_1_012047bib15) 2020; 30
Wang (JPCS_1966_1_012047bib19) 2019
Paszke (JPCS_1966_1_012047bib9) 2016
References_xml – start-page: 552
  year: 2018
  ident: JPCS_1966_1_012047bib13
– volume: 30
  start-page: 1169
  year: 2020
  ident: JPCS_1966_1_012047bib15
  article-title: Cgnet: A light-weight context guided network for semantic segmentation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.3042065
– start-page: 234
  year: 2015
  ident: JPCS_1966_1_012047bib16
– volume: 40
  start-page: 834
  year: 2017
  ident: JPCS_1966_1_012047bib5
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 6848
  year: 2018
  ident: JPCS_1966_1_012047bib14
– year: 2017
  ident: JPCS_1966_1_012047bib12
  publication-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– start-page: 770
  year: 2016
  ident: JPCS_1966_1_012047bib4
– volume: 41
  start-page: 1302
  year: 2020
  ident: JPCS_1966_1_012047bib7
  article-title: Image semantic segmentation based on convolutional neural network
  publication-title: Journal of Chinese Computer Systems
– start-page: 2881
  year: 2017
  ident: JPCS_1966_1_012047bib17
– volume: 25
  start-page: 1097
  year: 2012
  ident: JPCS_1966_1_012047bib2
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 10
  start-page: 1166
  year: 2020
  ident: JPCS_1966_1_012047bib6
  article-title: A novel digital modulation recognition algorithm based on deep convolutional neural network
  publication-title: Applied Sciences
  doi: 10.3390/app10031166
– start-page: 269
  year: 2018
  ident: JPCS_1966_1_012047bib10
– start-page: 405
  year: 2018
  ident: JPCS_1966_1_012047bib8
– start-page: 1860
  year: 2019
  ident: JPCS_1966_1_012047bib19
– start-page: 1
  year: 2019
  ident: JPCS_1966_1_012047bib20
– volume: 86
  start-page: 2278
  year: 1998
  ident: JPCS_1966_1_012047bib1
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– year: 2014
  ident: JPCS_1966_1_012047bib3
  publication-title: Very deep convolutional networks for large-scale image recognition
– start-page: 3213
  year: 2016
  ident: JPCS_1966_1_012047bib11
– year: 2015
  ident: JPCS_1966_1_012047bib21
  publication-title: Multi-scale context aggregation by dilated convolutions
– year: 2016
  ident: JPCS_1966_1_012047bib9
  publication-title: Enet: A deep neural network architecture for real-time semantic segmentation
– volume: 39
  start-page: 2481
  year: 2017
  ident: JPCS_1966_1_012047bib18
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2016.2644615
SSID ssj0033337
Score 2.277827
Snippet Encode-decoder structure is used in deep learning for real-time dense segmentation task. On account of the limitation of calculation burden on mobile devices,...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12047
SubjectTerms Asymmetry
Coders
Convolution
Deep learning
Electronic devices
Encoders-Decoders
Post-production processing
Real time
Semantic segmentation
Semantics
Weight reduction
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA5ewRfv4rxR0EfjsqVtUt-GKCJjKir6FnI5FR_WjXUq_ntP0g4ZIiLYh17gJA1f0pwvzbkQcgTa6ExnhnLrBI0FY1TrXFBkrsJqkfitopBsQvR68ukpm_KFGQzrqf8Eb6tAwRWEtUGcbCKHbtM0ydImjh48Nb3_ZyxmyTyXyAZwTF_zx8lszPEQlVOkLyTlxMbr54qmNNQstuLbNB10z8XKf7R6lSzXzDPqVCXWyAwU62QxWIDacoPcdjvnPRifRt0QWuQ9_DKNdPnR7_ukWzbyES8djKiDcI2KyoA8QtYbldDHHkKhEp77tTdTsUkeLs7vzy5pnW-BWr82pYmTwFG9y8QA8jzD2gZEkkhnGGSOO5fmMbNMx8JyH4UfTGpaLjeOJ4yZVPItMlcMCtgmUcsijwAALmIdc2AyS5PcWskMtDU-NAibYKyGVVgNFbbDpVQeKeWRUh4p1VIVUg1yjNiq-hMrfxc_nBK_ujm7m5ZQQ5c3yN6ka79EcZXlM5IILnf-9s5dstT2Ji_BmnePzI1Hr7BPFuzb-KUcHYRx-QkNP9sI
  priority: 102
  providerName: IOP Publishing
Title LAENet: Light-weight asymmetric encoder-decoder network for semantic segmentation
URI https://iopscience.iop.org/article/10.1088/1742-6596/1966/1/012047
https://www.proquest.com/docview/2550680738
Volume 1966
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xLUhcWl4VW8oqEhyx1rtOYocLaqutAJUlvEThYvkxQT1sdtksVPz7epxEpUKCAzkkijOHKN9kZmzPzAfwFI01hSksE85LlkrOmTGVZCFylc7IjLaKItmEnM_V2VlRdgtuTZdW2dvEaKj90tEa-TiEvkQTIYV6sfrOiDWKdlc7Co0BbFOXBKJuKLOvvSUW4ZBtQeSUBU-r-vyuMOnrxop8HFQwnMZUREocK795p8H5cvWHiY5-52T3f9_4Dux0EWdy2KrIXbiB9T24FTM_XXMf3p0ezua4eZ6cxpYiF3GpNDHNr8WCyLZcQp0uPa6Zx3hN6jZxPAnRbtLgIiAThBr8tuiqmOoH8Olk9vH4Jet4FpijOSnLvEIR3LrKLIb4zvKpRZllyluOhRfe51XKHTepdIK676PN7cRX1ouMc5srsQdb9bLGh5BMXIgfEFHI1KQCuSryrHJOcYtTE26GwPvvq1dtOw0dt8GV0gSJJkg0QaInuoVkCM8CDrr7tZp_iz-5Jv66PP5wXUKvfDWEgx6zK9ErwPb__vgR3J5SakvM2j2Arc36Bz6Gm-7n5rxZj2D7aDYv349g8FZ8HkWNDGPlqzfll0t7pOIg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB71AYILb8SWApGAG9Z64yR2kBCq-lCXbleLKFJ7Mn5MUA-bXTZbqv4pfiPjPFQqpHLqgRwSJRlZSvx5ZmzPzAfwBo01ucktE85LlkjOmTGFZOS5SmdkGraKarIJOR6r4-N8sgK_ulyYEFbZ6cRaUfuZC2vkfXJ9A02EFOrj_AcLrFFhd7Wj0GhgcYAX5zRlqz4Md6h_38bx3u7R9j5rWQWYCzMwlnqFgoyYSi2SN2N5bFGmqfKWY-6F91mRcMdNIp0ItebRZnbgC-tFyrnNlKB2V2E9IbDTiFqfDA8nJ53uF3TIJgUzZmTbVRdRRtPM9lme9Qn0dOqHtNXA6vKHPVw9nc3_Mgq1pdu7_7_9owdwr_Wpo61mEDyEFSwfwe06ttVVj-HzaGt3jMv30agumnJeLwZHprqYTgOdmItCLU-PC-axvkZlExofkT8fVTgl7JFQhd-nbZ5W-QS-3sj3PIW1clbiM4gGjjwkRBQyMYlArvIsLZxT3GJs6KYHvOtPPW8Khuh6o18pHSCgAwR0gIAe6AYCPXhH_a5b5VH9W_z1FfFPk-0vVyX03Bc92Owwcil6CZCN61-_gjv7R4cjPRqOD57D3TgE8tQxypuwtlyc4Qu45X4uT6vFy3YERPDtpgH1G9nZO78
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tC8QLgzFEYYNI7HGmbp3EDm_TWMW2qus0pu3N8sdl2kOzqikg_nvOTgqq0DQhLQ_5kM6O9fPl7hzfB8AeGmsKU1gmnJcslZwzY0rJyHKVzsgsbBXFYhNyNFLX18V4BQZ_YmHupq3o_0S3TaLgBsLWIU51yYbuszwr8i5xD526If4zld2pL1dhPaYrIb4-E1cLiSzokE1gZGio1MLP6_7OlrTUKo3kH1Ed9c9g87FG_gKetxZoctC0egkrWG3Bk-gJ6upXcD48OBrh_HMyjClGfsZfp4mpf00mofiWS0LmS48z5jFek6pxJE_I-k1qnNBMEVGNN5M2qqnahsvB0bfDr6ytu8BcWKOyzCsUpOZVZpHsPcv7FmWWKW85Fl54n5cpd9yk0omQjR9tbnu-tF5knNtcidewVt1V-AaSniN7AhGFTE0qkKsiz0rnFLfYN_TQAb7AWU-b9Bo6bosrpQNaOqClA1q6pxu0OrBP-Or2U6sfJv-4RH4yPrxYptAEfwd2FtP7l5RWW6EyiRTq7f-98wM8HX8Z6OHx6PQdPOsHL5jo4LsDa_PZd9yFDfdjflvP3kc2_Q3ps-Bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LAENet%3A+Light-weight+asymmetric+encoder-decoder+network+for+semantic+segmentation&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Hong%2C+Liangyi&rft.au=Duan%2C+Shukai&rft.au=Wang%2C+Lidan&rft.au=Pan%2C+Yongbin&rft.date=2021-07-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1966&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1966%2F1%2F012047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon