EMVS: Event-Based Multi-View Stereo—3D Reconstruction with an Event Camera in Real-Time
Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. However, because the o...
Saved in:
| Published in: | International journal of computer vision Vol. 126; no. 12; pp. 1394 - 1414 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2018
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-5691, 1573-1405 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. However, because the output is composed of a sequence of asynchronous events rather than actual intensity images, traditional vision algorithms cannot be applied, so that a paradigm shift is needed. We introduce the problem of event-based multi-view stereo (EMVS) for event cameras and propose a solution to it. Unlike traditional MVS methods, which address the problem of estimating
dense
3D structure from a set of known viewpoints, EMVS estimates
semi-dense
3D structure from an event camera with known trajectory. Our EMVS solution elegantly exploits two inherent properties of an event camera: (1) its ability to respond to scene edges—which naturally provide semi-dense geometric information without any pre-processing operation—and (2) the fact that it provides continuous measurements as the sensor moves. Despite its simplicity (it can be implemented in a few lines of code), our algorithm is able to produce accurate, semi-dense depth maps, without requiring any explicit data association or intensity estimation. We successfully validate our method on both synthetic and real data. Our method is computationally very efficient and runs in real-time on a CPU. |
|---|---|
| AbstractList | Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. However, because the output is composed of a sequence of asynchronous events rather than actual intensity images, traditional vision algorithms cannot be applied, so that a paradigm shift is needed. We introduce the problem of event-based multi-view stereo (EMVS) for event cameras and propose a solution to it. Unlike traditional MVS methods, which address the problem of estimating dense 3D structure from a set of known viewpoints, EMVS estimates semi-dense 3D structure from an event camera with known trajectory. Our EMVS solution elegantly exploits two inherent properties of an event camera: (1) its ability to respond to scene edges—which naturally provide semi-dense geometric information without any pre-processing operation—and (2) the fact that it provides continuous measurements as the sensor moves. Despite its simplicity (it can be implemented in a few lines of code), our algorithm is able to produce accurate, semi-dense depth maps, without requiring any explicit data association or intensity estimation. We successfully validate our method on both synthetic and real data. Our method is computationally very efficient and runs in real-time on a CPU. Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. However, because the output is composed of a sequence of asynchronous events rather than actual intensity images, traditional vision algorithms cannot be applied, so that a paradigm shift is needed. We introduce the problem of event-based multi-view stereo (EMVS) for event cameras and propose a solution to it. Unlike traditional MVS methods, which address the problem of estimating dense 3D structure from a set of known viewpoints, EMVS estimates semi-dense 3D structure from an event camera with known trajectory. Our EMVS solution elegantly exploits two inherent properties of an event camera: (1) its ability to respond to scene edges—which naturally provide semi-dense geometric information without any pre-processing operation—and (2) the fact that it provides continuous measurements as the sensor moves. Despite its simplicity (it can be implemented in a few lines of code), our algorithm is able to produce accurate, semi-dense depth maps, without requiring any explicit data association or intensity estimation. We successfully validate our method on both synthetic and real data. Our method is computationally very efficient and runs in real-time on a CPU. |
| Author | Rebecq, Henri Gallego, Guillermo Mueggler, Elias Scaramuzza, Davide |
| Author_xml | – sequence: 1 givenname: Henri orcidid: 0000-0002-6577-9735 surname: Rebecq fullname: Rebecq, Henri email: rebecq@ifi.uzh.ch organization: Robotics and Perception Group, Department of Informatics, University of Zurich, Robotics and Perception Group, Department of Neuroinformatics, University of Zurich and ETH Zurich – sequence: 2 givenname: Guillermo orcidid: 0000-0002-2672-9241 surname: Gallego fullname: Gallego, Guillermo organization: Robotics and Perception Group, Department of Informatics, University of Zurich, Robotics and Perception Group, Department of Neuroinformatics, University of Zurich and ETH Zurich – sequence: 3 givenname: Elias orcidid: 0000-0002-8008-443X surname: Mueggler fullname: Mueggler, Elias organization: Robotics and Perception Group, Department of Informatics, University of Zurich, Robotics and Perception Group, Department of Neuroinformatics, University of Zurich and ETH Zurich – sequence: 4 givenname: Davide orcidid: 0000-0002-3831-6778 surname: Scaramuzza fullname: Scaramuzza, Davide organization: Robotics and Perception Group, Department of Informatics, University of Zurich, Robotics and Perception Group, Department of Neuroinformatics, University of Zurich and ETH Zurich |
| BookMark | eNp9kMtKAzEUQIMo2Kof4G7AdTSPyaPutNYHWAQfBVchnbmjKW2mJhmLOz_CL_RLnDKCIOgqm3PuvTl9tOlrDwjtU3JICVFHkVImOSZUYUoEwXID9ahQHNOciE3UIwNGsJADuo36Mc4IIUwz3kOPo_Hk7jgbvYJP-NRGKLNxM08OTxyssrsEAerP9w9-lt1CUfuYQlMkV_ts5dJzZn1nZkO7gGAz51vMzvG9W8Au2qrsPMLe97uDHs5H98NLfH1zcTU8ucYFU7nEpabTXAuQIKqpECWvSkkFp4VVFSuJrHKrcyVKogoBAyuEzIHnUFhZKQDG-Q466OYuQ_3SQExmVjfBtysNo0wPtNJat5TqqCLUMQaoTOGSXf8kBevmhhKz7mi6jqbtaNYdjWxN-stcBrew4e1fh3VObFn_BOHnpr-lLwv5hi8 |
| CitedBy_id | crossref_primary_10_1109_TITS_2023_3276328 crossref_primary_10_4018_IJITSA_320826 crossref_primary_10_1007_s00348_022_03441_6 crossref_primary_10_1109_TCSVT_2023_3249195 crossref_primary_10_1016_j_isprsjprs_2025_03_013 crossref_primary_10_1109_TASE_2023_3324365 crossref_primary_10_3390_s24051382 crossref_primary_10_3389_fncir_2021_610446 crossref_primary_10_1080_01691864_2020_1821770 crossref_primary_10_1109_TPAMI_2021_3053243 crossref_primary_10_1109_TPAMI_2024_3396116 crossref_primary_10_3390_s24206527 crossref_primary_10_1109_TPAMI_2020_3008413 crossref_primary_10_1109_ACCESS_2020_3003160 crossref_primary_10_3390_jsan14010007 crossref_primary_10_1109_TVCG_2025_3576305 crossref_primary_10_3390_s24237493 crossref_primary_10_3390_s21041475 crossref_primary_10_1063_5_0090714 crossref_primary_10_1109_TNNLS_2021_3061122 crossref_primary_10_1016_j_rcim_2022_102419 crossref_primary_10_1007_s11263_019_01209_w crossref_primary_10_1109_ACCESS_2025_3551073 crossref_primary_10_1007_s11263_025_02418_2 crossref_primary_10_1109_TIM_2021_3097862 crossref_primary_10_1177_1729881420972278 crossref_primary_10_1109_TIM_2023_3325508 crossref_primary_10_3390_s23156655 crossref_primary_10_1016_j_eswa_2023_122743 crossref_primary_10_1007_s00348_024_03877_y crossref_primary_10_1109_LRA_2021_3096161 crossref_primary_10_1109_TIP_2024_3445736 crossref_primary_10_3390_s22186732 crossref_primary_10_1109_TIM_2022_3144229 crossref_primary_10_1109_TIM_2025_3568945 crossref_primary_10_1016_j_inffus_2025_103697 crossref_primary_10_1109_LRA_2025_3609095 crossref_primary_10_1109_TPAMI_2022_3227448 crossref_primary_10_1016_j_neunet_2025_107591 crossref_primary_10_1109_TCSVT_2025_3559299 crossref_primary_10_1109_TIV_2023_3323378 crossref_primary_10_2351_7_0001526 crossref_primary_10_3390_s22155687 crossref_primary_10_1109_TRO_2024_3378443 crossref_primary_10_3389_fmats_2023_1269992 crossref_primary_10_1109_JIOT_2020_3007866 crossref_primary_10_1109_TRO_2021_3062252 crossref_primary_10_1007_s11263_025_02438_y crossref_primary_10_1109_TPAMI_2024_3474858 crossref_primary_10_3390_eng6070153 crossref_primary_10_1002_aisy_202400243 crossref_primary_10_1109_LRA_2023_3311374 crossref_primary_10_1038_s41597_024_02920_1 crossref_primary_10_3390_s23146475 crossref_primary_10_1007_s11340_023_00966_7 crossref_primary_10_1109_TRO_2018_2858287 crossref_primary_10_1109_ACCESS_2019_2914033 crossref_primary_10_1109_TCSVT_2024_3378742 crossref_primary_10_1109_TNNLS_2022_3201830 crossref_primary_10_1002_aisy_202200221 crossref_primary_10_1109_TPAMI_2025_3586559 crossref_primary_10_1109_TPAMI_2021_3085783 crossref_primary_10_3389_fnbot_2019_00028 crossref_primary_10_1002_aisy_202400353 crossref_primary_10_1016_j_fmre_2023_08_004 crossref_primary_10_3389_fnins_2018_00774 crossref_primary_10_1016_j_neucom_2025_130136 crossref_primary_10_1109_LRA_2024_3355765 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_3390_electronics14061078 crossref_primary_10_1109_TCSII_2021_3108798 crossref_primary_10_1109_TPAMI_2021_3130049 crossref_primary_10_1016_j_mejo_2021_105312 crossref_primary_10_1109_TPAMI_2024_3380648 crossref_primary_10_1007_s11263_023_01959_8 crossref_primary_10_1155_2022_4037625 crossref_primary_10_1109_TRO_2024_3355370 crossref_primary_10_1109_TVCG_2023_3320271 crossref_primary_10_1109_LRA_2022_3187266 crossref_primary_10_1109_TRO_2025_3584544 crossref_primary_10_1145_3656469 crossref_primary_10_1109_ACCESS_2018_2879337 crossref_primary_10_1109_LRA_2021_3088793 crossref_primary_10_1007_s11263_020_01410_2 crossref_primary_10_1364_PRJ_432292 crossref_primary_10_3390_s21237840 crossref_primary_10_3390_s22145190 crossref_primary_10_3390_s25030887 crossref_primary_10_1007_s10846_022_01753_7 crossref_primary_10_1109_LSP_2020_3016251 crossref_primary_10_1109_TMM_2025_3542978 crossref_primary_10_1109_TRO_2025_3548523 crossref_primary_10_1109_LRA_2023_3269950 crossref_primary_10_3390_s24237752 crossref_primary_10_3390_biomimetics9070444 crossref_primary_10_1109_ACCESS_2021_3133533 crossref_primary_10_1109_ACCESS_2023_3282637 crossref_primary_10_1007_s11263_025_02379_6 crossref_primary_10_1016_j_inffus_2024_102646 crossref_primary_10_2478_amns_2025_0060 crossref_primary_10_3390_app13042224 crossref_primary_10_1016_j_ast_2025_110338 crossref_primary_10_1002_aisy_202200251 crossref_primary_10_1007_s11263_025_02488_2 crossref_primary_10_1016_j_autcon_2025_106007 crossref_primary_10_1109_TVCG_2024_3360468 crossref_primary_10_1109_TIM_2024_3470063 crossref_primary_10_1016_j_cviu_2023_103817 crossref_primary_10_1117_1_AP_6_2_024001 |
| Cites_doi | 10.1109/CVPR.2006.19 10.1109/IROS.2016.7758089 10.1016/j.imavis.2011.01.006 10.1109/ESSDERC.2016.7599576 10.1007/978-3-642-39402-7_14 10.1109/ISCAS.2010.5537289 10.1109/34.888718 10.5772/12941 10.1109/ICRA.2014.6906584 10.1177/0278364917691115 10.1109/ROBIO.2012.6491077 10.1109/IJCNN.2011.6033299 10.5244/C.28.26 10.1109/ISCAS.2012.6272144 10.1109/ISCAS.2007.378038 10.1109/ICCVW.2013.13 10.1109/ICRA.2011.5980567 10.3389/fnins.2014.00048 10.1109/TNNLS.2011.2180025 10.3389/fnins.2013.00223 10.1109/ITSC.2006.1706816 10.1023/A:1008192912624 10.1016/j.neunet.2011.11.001 10.5244/C.30.63 10.1109/CVPRW.2012.6238898 10.1109/TNNLS.2014.2308551 10.1109/CVPR.2016.102 10.1109/IROS.2014.6942940 10.1007/978-3-319-10605-2_54 10.1109/TPAMI.2015.2392947 10.1109/TPAMI.2016.2574707 10.1007/978-3-642-24028-7_62 10.1007/978-3-319-46466-4_21 10.1109/CVPRW.2012.6238892 10.1109/LRA.2016.2645143 10.1109/JSSC.2007.914337 10.1109/ICCPHOT.2015.7168370 10.1109/ICRA.2014.6907233 10.1109/ISCAS.2014.6865228 10.5244/C.30.9 10.1109/CVPR.1996.517097 10.1109/TPAMI.2017.2658577 10.1109/TNNLS.2013.2273537 10.1109/TPAMI.2017.2769655 10.3389/fnins.2016.00176 10.1109/JSSC.2014.2342715 10.1007/s00348-011-1207-y 10.1109/CVPR.2015.7298644 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC 2017 International Journal of Computer Vision is a copyright of Springer, (2017). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: International Journal of Computer Vision is a copyright of Springer, (2017). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1007/s11263-017-1050-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 1414 |
| ExternalDocumentID | 10_1007_s11263_017_1050_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c2746-d81b485e6e5fb55d3fd61531ca7f2d06f4a8475d07c5e9a5564e34eca6f7ee233 |
| IEDL.DBID | M0C |
| ISSN | 0920-5691 |
| IngestDate | Tue Nov 04 22:17:57 EST 2025 Tue Nov 18 20:42:56 EST 2025 Sat Nov 29 06:42:27 EST 2025 Fri Feb 21 02:35:17 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Multi-view stereo Event cameras 3D reconstruction Event-based vision |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2746-d81b485e6e5fb55d3fd61531ca7f2d06f4a8475d07c5e9a5564e34eca6f7ee233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2672-9241 0000-0002-6577-9735 0000-0002-8008-443X 0000-0002-3831-6778 |
| PQID | 2128987888 |
| PQPubID | 1456341 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2128987888 crossref_citationtrail_10_1007_s11263_017_1050_6 crossref_primary_10_1007_s11263_017_1050_6 springer_journals_10_1007_s11263_017_1050_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20181200 2018-12-00 20181201 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 20181200 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | HartleyRZissermanAMultiple view geometry in computer vision20032CambridgeCambridge University Press0956.68149 RebecqHHorstschäferTGallegoGScaramuzzaDEVO: A geometric approach to event-based 6-DOF parallel tracking and mapping in real-timeIEEE Robotics and Automation Letters2017259360010.1109/LRA.2016.2645143 DrazenDLichtsteinerPHafligerPDelbruckTJensenAToward real-time particle tracking using an event-based dynamic vision sensorExperiments in Fluids20115151465146910.1007/s00348-011-1207-y Rebecq, H., Gallego, G., & Scaramuzza, D. (2016). EMVS: Event-based multi-view stereo. In British Machine Vision Conference (BMVC). https://doi.org/10.5244/C.30.63. BenosmanRIengS-HClercqCBartolozziCSrinivasanMAsynchronous frameless event-based optical flowNeural Networks201227323710.1016/j.neunet.2011.11.001 Kueng, B., Mueggler, E., Gallego, G., & Scaramuzza, D. (2016). Low-latency visual odometry using event-based feature tracks. In IEEE/RSJ International Conference on IIntelligent Robots and Systems (IROS) (pp. 16–23). Daejeon, Korea. https://doi.org/10.1109/IROS.2016.7758089. Schraml, S., Belbachir, A. N., Milosevic, N., & Schön, P. (2010). Dynamic stereo vision system for real-time tracking. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1409–1412). https://doi.org/10.1109/ISCAS.2010.5537289. LichtsteinerPPoschCDelbruckTA 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 128 120 dB 15 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}s latency asynchronous temporal contrast vision sensorIEEE Journal of Solid-State Circuits200843256657610.1109/JSSC.2007.914337 KoglerJurgenHumenbergerMartinSulzbachnerChristophEvent-Based Stereo Matching Approaches for Frameless Address Event Stereo DataAdvances in Visual Computing2011Berlin, HeidelbergSpringer Berlin Heidelberg67468510.1007/978-3-642-24028-7_62 Litzenberger, M., Belbachir, A. N., Donath, N., Gritsch, G., Garn, H., Kohn, B., Posch, C., & Schraml, S. (2006). Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor. In IEEE Intelligent Transportation Systems Conference (pp. 653–658). https://doi.org/10.1109/ITSC.2006.1706816. SzeliskiRComputer vision: Algorithms and applications2010LondonSpringer1219.68009 LeeJun HaengDelbruckTobiPfeifferMichaelParkPaul K. J.ShinChang-WooRyuHyunsurkKangByung ChangReal-Time Gesture Interface Based on Event-Driven Processing From Stereo Silicon RetinasIEEE Transactions on Neural Networks and Learning Systems201425122250226310.1109/TNNLS.2014.2308551 Weikersdorfer, D., & Conradt, J. (2012). Event-based particle filtering for robot self-localization. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 866–870). https://doi.org/10.1109/ROBIO.2012.6491077. EngelJakobSchöpsThomasCremersDanielLSD-SLAM: Large-Scale Direct Monocular SLAMComputer Vision – ECCV 20142014ChamSpringer International Publishing834849 Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). SVO: Fast semi-direct monocular visual odometry. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 15–22). https://doi.org/10.1109/ICRA.2014.6906584. Censi, A., & Scaramuzza, D. (2014). Low-latency event-based visual odometry. In IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/IROS.2016.7758089. Delbruck, T., & Lichtsteiner, P. (2007). Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 845–848). https://doi.org/10.1109/ISCAS.2007.378038. Collins, R. T. (1996). A space-sweep approach to true multi-image matching. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (pp. 358–363). https://doi.org/10.1109/CVPR.1996.517097. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2006.19. RogisterPBenosmanRIengS-HLichtsteinerPDelbruckTAsynchronous event-based binocular stereo matchingIEEE Transactions on Neural Networks and Learning Systems201223234735310.1109/TNNLS.2011.2180025 Pizzoli, M., Forster, C., & Scaramuzza, D. (2014). REMODE: Probabilistic, monocular dense reconstruction in real time. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2609–2616). https://doi.org/10.1109/ICRA.2014.6907233. MuegglerERebecqHGallegoGDelbruckTScaramuzzaDThe event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAMInternational Journal of Robotics Research20173614214910.1177/0278364917691115 Rusu, R. B., & Cousins, S. (2011). 3D is here: Point cloud library (PCL). In IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China. https://doi.org/10.1109/ICRA.2011.5980567. Brandli, C., Muller, L., & Delbruck, T. (2014a) Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor. In International Symposium Circuits and Systems (ISCAS) (pp. 686–689). https://doi.org/10.1109/ISCAS.2014.6865228. Piatkowska, E., Belbachir, A. N., Schraml, S., & Gelautz, M. (2012). Spatiotemporal multiple persons tracking using dynamic vision sensor. In IEEE International Conference on Computer Vision and Pattern Recognition Workshop (pp. 35–40). https://doi.org/10.1109/CVPRW.2012.6238892. Bardow, P., Davison, A. J., & Leutenegger, S. (2016). Simultaneous optical flow and intensity estimation from an event camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.102. Cook, M., Gugelmann, L., Jug, F., Krautz, C., & Steger, A. (2011). Interacting maps for fast visual interpretation. In International Joint Conference Neural Networks (IJCNN) (pp. 770–776). https://doi.org/10.1109/IJCNN.2011.6033299. Lee, J., Delbruck, T., Park, P. K. J., Pfeiffer, M., Shin, C.-W., Ryu, H., & Kang, B. C. (2012). Live demonstration: Gesture-based remote control using stereo pair of dynamic vision sensors. In IEEE International Symposium on Circuits and Systems (ISCAS). https://doi.org/10.1109/ISCAS.2012.6272144. Kim, H., Handa, A., Benosman, R., Ieng, S.-H., & Davison, A. J. (2014). Simultaneous mosaicing and tracking with an event camera. In British Machine Vision Conference (BMVC). https://doi.org/10.5244/C.28.26. LagorceXOrchardGGallupiFShiBEBenosmanRHOTS: A hierarchy of event-based time-surfaces for pattern recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence201610.1109/TPAMI.2016.2574707 Reinbacher, C., Graber, G., & Pock, T. (2016). Real-time intensity-image reconstruction for event cameras using manifold regularisation. In British Machine Vision Conference (BMVC). https://doi.org/10.5244/C.30.9. KoglerJrgenSulzbachnerChristophHumenbergerMartinEibensteinerFlorianAddress-Event Based Stereo Vision with Bio-Inspired Silicon Retina ImagersAdvances in Theory and Applications of Stereo Vision2011 WolbergGDigital image warping1990CaliforniaWiley-IEEE Computer Society Press EngelJakobKoltunVladlenCremersDanielDirect Sparse OdometryIEEE Transactions on Pattern Analysis and Machine Intelligence201840361162510.1109/TPAMI.2017.2658577 BrandliChristianBernerRaphaelMinhao YangShih-Chii LiuDelbruckTobiA 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision SensorIEEE Journal of Solid-State Circuits201449102333234110.1109/JSSC.2014.2342715 Mueggler, E., Huber, B., & Scaramuzza, D. (2014). Event-based, 6-DOF pose tracking for high-speed maneuvers. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2761–2768). https://doi.org/10.1109/IROS.2014.6942940. DelbruckTLangMRobotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensorFrontiers in Neuroscience201310.3389/fnins.2013.00223 Schraml, S., Belbachir, A. N., & Bischof, H. (2015). Event-driven stereo matching for real-time 3D panoramic vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 466–474). https://doi.org/10.1109/CVPR.2015.7298644. KimHanmeLeuteneggerStefanDavisonAndrew J.Real-Time 3D Reconstruction and 6-DoF Tracking with an Event CameraComputer Vision – ECCV 20162016ChamSpringer International Publishing34936410.1007/978-3-319-46466-4_21 Wiesmann, G., Schraml, S., Litzenberger, M., Belbachir, A. N., Hofstatter, M., & Bartolozzi, C. (2012). Event-driven embodied system for feature extraction and object recognition in robotic applications. In IEEE International Conference on Computer Vision and Pattern Recognition Workshop (pp. 76–82). https://doi.org/10.1109/CVPRW.2012.6238898. Matsuda, N., Cossairt, O., & Gupta. M. (2015). MC3D: Motion contrast 3D scanning. In IEEE International Conference on Computational Photography (ICCP) (pp. 1–10). https://doi.org/10.1109/ICCPHOT.2015.7168370. GallegoGuillermoLundJon E.A.MuegglerEliasRebecqHenriDelbruckTobiScaramuzzaDavideEvent-Based, 6-DOF Camera Tracking from Photometric Depth MapsIEEE Transactions on Pattern Analysis and Machine Intelligence201840102402241210.1109/TPAMI.2017.2769655 OrchardGMeyerCEtienne-CummingsRPoschCThakorNBenosmanRHFirst: A temporal approach to object recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence201537102028204010.1109/TPAMI.2015.2392947 RueckauerBDelbruckTEvaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensorFrontiers in Neuroscience201610.3389/fnins.2016.00176 Camunas-MesaLASerrano-GotarredonaTIengSHBenosm G Wolberg (1050_CR51) 1990 1050_CR38 1050_CR35 1050_CR36 1050_CR33 1050_CR34 E Mueggler (1050_CR31) 2017; 36 H Rebecq (1050_CR37) 2017; 2 1050_CR30 R Hartley (1050_CR18) 2003 P Rogister (1050_CR39) 2012; 23 1050_CR28 1050_CR29 1050_CR26 1050_CR25 1050_CR22 1050_CR23 1050_CR20 1050_CR21 G Orchard (1050_CR32) 2015; 37 R Szeliski (1050_CR45) 2010 1050_CR19 Z Zhang (1050_CR52) 2000; 22 1050_CR17 P Lichtsteiner (1050_CR27) 2008; 43 1050_CR15 1050_CR16 1050_CR14 R Szeliski (1050_CR46) 1999; 32 R Benosman (1050_CR3) 2012; 27 1050_CR11 1050_CR10 1050_CR50 D Drazen (1050_CR13) 2011; 51 1050_CR1 B Rueckauer (1050_CR40) 2016 G Vogiatzis (1050_CR47) 2011; 29 1050_CR8 1050_CR9 T Delbruck (1050_CR12) 2013 1050_CR7 1050_CR4 1050_CR48 1050_CR5 1050_CR49 1050_CR44 1050_CR42 1050_CR43 1050_CR41 LA Camunas-Mesa (1050_CR6) 2014; 8 X Lagorce (1050_CR24) 2016 R Benosman (1050_CR2) 2014; 25 |
| References_xml | – reference: DrazenDLichtsteinerPHafligerPDelbruckTJensenAToward real-time particle tracking using an event-based dynamic vision sensorExperiments in Fluids20115151465146910.1007/s00348-011-1207-y – reference: Lee, J., Delbruck, T., Park, P. K. J., Pfeiffer, M., Shin, C.-W., Ryu, H., & Kang, B. C. (2012). Live demonstration: Gesture-based remote control using stereo pair of dynamic vision sensors. In IEEE International Symposium on Circuits and Systems (ISCAS). https://doi.org/10.1109/ISCAS.2012.6272144. – reference: SzeliskiRGollandPStereo matching with transparency and mattingInternational Journal of Computer Vision1999321456110.1023/A:1008192912624 – reference: RueckauerBDelbruckTEvaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensorFrontiers in Neuroscience201610.3389/fnins.2016.00176 – reference: Rusu, R. B., & Cousins, S. (2011). 3D is here: Point cloud library (PCL). In IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China. https://doi.org/10.1109/ICRA.2011.5980567. – reference: EngelJakobSchöpsThomasCremersDanielLSD-SLAM: Large-Scale Direct Monocular SLAMComputer Vision – ECCV 20142014ChamSpringer International Publishing834849 – reference: Bardow, P., Davison, A. J., & Leutenegger, S. (2016). Simultaneous optical flow and intensity estimation from an event camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.102. – reference: ZhangZA flexible new technique for camera calibrationIEEE Transactions on Pattern Analysis and Machine Intelligence200022111330133410.1109/34.888718ISSN 0162-8828 – reference: KimHanmeLeuteneggerStefanDavisonAndrew J.Real-Time 3D Reconstruction and 6-DoF Tracking with an Event CameraComputer Vision – ECCV 20162016ChamSpringer International Publishing34936410.1007/978-3-319-46466-4_21 – reference: Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2006.19. – reference: Forster, C., Pizzoli, M., & Scaramuzza, D. (2014). SVO: Fast semi-direct monocular visual odometry. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 15–22). https://doi.org/10.1109/ICRA.2014.6906584. – reference: LagorceXOrchardGGallupiFShiBEBenosmanRHOTS: A hierarchy of event-based time-surfaces for pattern recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence201610.1109/TPAMI.2016.2574707 – reference: Rebecq, H., Gallego, G., & Scaramuzza, D. (2016). EMVS: Event-based multi-view stereo. In British Machine Vision Conference (BMVC). https://doi.org/10.5244/C.30.63. – reference: BrandliChristianBernerRaphaelMinhao YangShih-Chii LiuDelbruckTobiA 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision SensorIEEE Journal of Solid-State Circuits201449102333234110.1109/JSSC.2014.2342715 – reference: RogisterPBenosmanRIengS-HLichtsteinerPDelbruckTAsynchronous event-based binocular stereo matchingIEEE Transactions on Neural Networks and Learning Systems201223234735310.1109/TNNLS.2011.2180025 – reference: DelbruckTLangMRobotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensorFrontiers in Neuroscience201310.3389/fnins.2013.00223 – reference: Kim, H., Handa, A., Benosman, R., Ieng, S.-H., & Davison, A. J. (2014). Simultaneous mosaicing and tracking with an event camera. In British Machine Vision Conference (BMVC). https://doi.org/10.5244/C.28.26. – reference: Schraml, S., Belbachir, A. N., Milosevic, N., & Schön, P. (2010). Dynamic stereo vision system for real-time tracking. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1409–1412). https://doi.org/10.1109/ISCAS.2010.5537289. – reference: MuegglerERebecqHGallegoGDelbruckTScaramuzzaDThe event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAMInternational Journal of Robotics Research20173614214910.1177/0278364917691115 – reference: KoglerJrgenSulzbachnerChristophHumenbergerMartinEibensteinerFlorianAddress-Event Based Stereo Vision with Bio-Inspired Silicon Retina ImagersAdvances in Theory and Applications of Stereo Vision2011 – reference: WeikersdorferDavidHoffmannRaoulConradtJörgSimultaneous Localization and Mapping for Event-Based Vision SystemsLecture Notes in Computer Science2013Berlin, HeidelbergSpringer Berlin Heidelberg133142 – reference: Mueggler, E., Huber, B., & Scaramuzza, D. (2014). Event-based, 6-DOF pose tracking for high-speed maneuvers. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2761–2768). https://doi.org/10.1109/IROS.2014.6942940. – reference: Pizzoli, M., Forster, C., & Scaramuzza, D. (2014). REMODE: Probabilistic, monocular dense reconstruction in real time. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2609–2616). https://doi.org/10.1109/ICRA.2014.6907233. – reference: EngelJakobKoltunVladlenCremersDanielDirect Sparse OdometryIEEE Transactions on Pattern Analysis and Machine Intelligence201840361162510.1109/TPAMI.2017.2658577 – reference: HartleyRZissermanAMultiple view geometry in computer vision20032CambridgeCambridge University Press0956.68149 – reference: LeeJun HaengDelbruckTobiPfeifferMichaelParkPaul K. J.ShinChang-WooRyuHyunsurkKangByung ChangReal-Time Gesture Interface Based on Event-Driven Processing From Stereo Silicon RetinasIEEE Transactions on Neural Networks and Learning Systems201425122250226310.1109/TNNLS.2014.2308551 – reference: Schraml, S., Belbachir, A. N., & Bischof, H. (2015). Event-driven stereo matching for real-time 3D panoramic vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 466–474). https://doi.org/10.1109/CVPR.2015.7298644. – reference: Wiesmann, G., Schraml, S., Litzenberger, M., Belbachir, A. N., Hofstatter, M., & Bartolozzi, C. (2012). Event-driven embodied system for feature extraction and object recognition in robotic applications. In IEEE International Conference on Computer Vision and Pattern Recognition Workshop (pp. 76–82). https://doi.org/10.1109/CVPRW.2012.6238898. – reference: RebecqHHorstschäferTGallegoGScaramuzzaDEVO: A geometric approach to event-based 6-DOF parallel tracking and mapping in real-timeIEEE Robotics and Automation Letters2017259360010.1109/LRA.2016.2645143 – reference: Brandli, C., Muller, L., & Delbruck, T. (2014a) Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor. In International Symposium Circuits and Systems (ISCAS) (pp. 686–689). https://doi.org/10.1109/ISCAS.2014.6865228. – reference: GallegoGuillermoLundJon E.A.MuegglerEliasRebecqHenriDelbruckTobiScaramuzzaDavideEvent-Based, 6-DOF Camera Tracking from Photometric Depth MapsIEEE Transactions on Pattern Analysis and Machine Intelligence201840102402241210.1109/TPAMI.2017.2769655 – reference: OrchardGMeyerCEtienne-CummingsRPoschCThakorNBenosmanRHFirst: A temporal approach to object recognitionIEEE Transactions on Pattern Analysis and Machine Intelligence201537102028204010.1109/TPAMI.2015.2392947 – reference: WolbergGDigital image warping1990CaliforniaWiley-IEEE Computer Society Press – reference: Camunas-MesaLASerrano-GotarredonaTIengSHBenosmanRBLinares-BarrancoBOn the use of orientation filters for 3D reconstruction in event-driven stereo visionFrontiers in Neuroscience201484810.3389/fnins.2014.00048 – reference: Censi, A., & Scaramuzza, D. (2014). Low-latency event-based visual odometry. In IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/IROS.2016.7758089. – reference: BenosmanRIengS-HClercqCBartolozziCSrinivasanMAsynchronous frameless event-based optical flowNeural Networks201227323710.1016/j.neunet.2011.11.001 – reference: BenosmanRClercqCLagorceXIengS-HBartolozziCEvent-based visual flowIEEE Transactions on Neural Networks and Learning Systems201425240741710.1109/TNNLS.2013.2273537 – reference: Weikersdorfer, D., & Conradt, J. (2012). Event-based particle filtering for robot self-localization. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 866–870). https://doi.org/10.1109/ROBIO.2012.6491077. – reference: VogiatzisGHernándezCVideo-based, real-time multi view stereoImage and Vision Computing201129743444110.1016/j.imavis.2011.01.006 – reference: Piatkowska, E., Belbachir, A. N., Schraml, S., & Gelautz, M. (2012). Spatiotemporal multiple persons tracking using dynamic vision sensor. In IEEE International Conference on Computer Vision and Pattern Recognition Workshop (pp. 35–40). https://doi.org/10.1109/CVPRW.2012.6238892. – reference: Kueng, B., Mueggler, E., Gallego, G., & Scaramuzza, D. (2016). Low-latency visual odometry using event-based feature tracks. In IEEE/RSJ International Conference on IIntelligent Robots and Systems (IROS) (pp. 16–23). Daejeon, Korea. https://doi.org/10.1109/IROS.2016.7758089. – reference: Delbruck, T., & Lichtsteiner, P. (2007). Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 845–848). https://doi.org/10.1109/ISCAS.2007.378038. – reference: LichtsteinerPPoschCDelbruckTA 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} 128 120 dB 15 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}s latency asynchronous temporal contrast vision sensorIEEE Journal of Solid-State Circuits200843256657610.1109/JSSC.2007.914337 – reference: Matsuda, N., Cossairt, O., & Gupta. M. (2015). MC3D: Motion contrast 3D scanning. In IEEE International Conference on Computational Photography (ICCP) (pp. 1–10). https://doi.org/10.1109/ICCPHOT.2015.7168370. – reference: SzeliskiRComputer vision: Algorithms and applications2010LondonSpringer1219.68009 – reference: Cook, M., Gugelmann, L., Jug, F., Krautz, C., & Steger, A. (2011). Interacting maps for fast visual interpretation. In International Joint Conference Neural Networks (IJCNN) (pp. 770–776). https://doi.org/10.1109/IJCNN.2011.6033299. – reference: KoglerJurgenHumenbergerMartinSulzbachnerChristophEvent-Based Stereo Matching Approaches for Frameless Address Event Stereo DataAdvances in Visual Computing2011Berlin, HeidelbergSpringer Berlin Heidelberg67468510.1007/978-3-642-24028-7_62 – reference: Delbruck, T. (2016). Neuromorophic vision sensing and processing. In European Solid-State Device Research Conferernce (ESSDERC) (pp. 7–14). https://doi.org/10.1109/ESSDERC.2016.7599576. – reference: Reinbacher, C., Graber, G., & Pock, T. (2016). Real-time intensity-image reconstruction for event cameras using manifold regularisation. In British Machine Vision Conference (BMVC). https://doi.org/10.5244/C.30.9. – reference: Collins, R. T. (1996). A space-sweep approach to true multi-image matching. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (pp. 358–363). https://doi.org/10.1109/CVPR.1996.517097. – reference: Litzenberger, M., Belbachir, A. N., Donath, N., Gritsch, G., Garn, H., Kohn, B., Posch, C., & Schraml, S. (2006). Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor. In IEEE Intelligent Transportation Systems Conference (pp. 653–658). https://doi.org/10.1109/ITSC.2006.1706816. – reference: Piatkowska, E., Belbachir, A. N., & Gelautz, M. (2013). Asynchronous stereo vision for event-driven dynamic stereo sensor using an adaptive cooperative approach. In International Conference on Computer Vision Workshops (ICCVW) (pp. 45–50). https://doi.org/10.1109/ICCVW.2013.13. – ident: 1050_CR44 doi: 10.1109/CVPR.2006.19 – ident: 1050_CR23 doi: 10.1109/IROS.2016.7758089 – volume: 29 start-page: 434 issue: 7 year: 2011 ident: 1050_CR47 publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2011.01.006 – ident: 1050_CR10 doi: 10.1109/ESSDERC.2016.7599576 – ident: 1050_CR49 doi: 10.1007/978-3-642-39402-7_14 – ident: 1050_CR43 doi: 10.1109/ISCAS.2010.5537289 – volume: 22 start-page: 1330 issue: 11 year: 2000 ident: 1050_CR52 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.888718 – ident: 1050_CR22 doi: 10.5772/12941 – ident: 1050_CR16 doi: 10.1109/ICRA.2014.6906584 – volume: 36 start-page: 142 year: 2017 ident: 1050_CR31 publication-title: International Journal of Robotics Research doi: 10.1177/0278364917691115 – ident: 1050_CR48 doi: 10.1109/ROBIO.2012.6491077 – ident: 1050_CR9 doi: 10.1109/IJCNN.2011.6033299 – ident: 1050_CR19 doi: 10.5244/C.28.26 – ident: 1050_CR25 doi: 10.1109/ISCAS.2012.6272144 – ident: 1050_CR11 doi: 10.1109/ISCAS.2007.378038 – ident: 1050_CR33 doi: 10.1109/ICCVW.2013.13 – ident: 1050_CR41 doi: 10.1109/ICRA.2011.5980567 – volume: 8 start-page: 48 year: 2014 ident: 1050_CR6 publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2014.00048 – ident: 1050_CR7 doi: 10.1109/IROS.2016.7758089 – volume: 23 start-page: 347 issue: 2 year: 2012 ident: 1050_CR39 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2011.2180025 – year: 2013 ident: 1050_CR12 publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2013.00223 – ident: 1050_CR28 doi: 10.1109/ITSC.2006.1706816 – volume: 32 start-page: 45 issue: 1 year: 1999 ident: 1050_CR46 publication-title: International Journal of Computer Vision doi: 10.1023/A:1008192912624 – volume: 27 start-page: 32 year: 2012 ident: 1050_CR3 publication-title: Neural Networks doi: 10.1016/j.neunet.2011.11.001 – ident: 1050_CR36 doi: 10.5244/C.30.63 – ident: 1050_CR50 doi: 10.1109/CVPRW.2012.6238898 – ident: 1050_CR26 doi: 10.1109/TNNLS.2014.2308551 – volume-title: Multiple view geometry in computer vision year: 2003 ident: 1050_CR18 – ident: 1050_CR1 doi: 10.1109/CVPR.2016.102 – ident: 1050_CR30 doi: 10.1109/IROS.2014.6942940 – volume-title: Digital image warping year: 1990 ident: 1050_CR51 – ident: 1050_CR14 doi: 10.1007/978-3-319-10605-2_54 – volume: 37 start-page: 2028 issue: 10 year: 2015 ident: 1050_CR32 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2392947 – year: 2016 ident: 1050_CR24 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2574707 – ident: 1050_CR21 doi: 10.1007/978-3-642-24028-7_62 – ident: 1050_CR20 doi: 10.1007/978-3-319-46466-4_21 – ident: 1050_CR34 doi: 10.1109/CVPRW.2012.6238892 – volume: 2 start-page: 593 year: 2017 ident: 1050_CR37 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2016.2645143 – volume: 43 start-page: 566 issue: 2 year: 2008 ident: 1050_CR27 publication-title: IEEE Journal of Solid-State Circuits doi: 10.1109/JSSC.2007.914337 – ident: 1050_CR29 doi: 10.1109/ICCPHOT.2015.7168370 – volume-title: Computer vision: Algorithms and applications year: 2010 ident: 1050_CR45 – ident: 1050_CR35 doi: 10.1109/ICRA.2014.6907233 – ident: 1050_CR4 doi: 10.1109/ISCAS.2014.6865228 – ident: 1050_CR38 doi: 10.5244/C.30.9 – ident: 1050_CR8 doi: 10.1109/CVPR.1996.517097 – ident: 1050_CR15 doi: 10.1109/TPAMI.2017.2658577 – volume: 25 start-page: 407 issue: 2 year: 2014 ident: 1050_CR2 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2273537 – ident: 1050_CR17 doi: 10.1109/TPAMI.2017.2769655 – year: 2016 ident: 1050_CR40 publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00176 – ident: 1050_CR5 doi: 10.1109/JSSC.2014.2342715 – volume: 51 start-page: 1465 issue: 5 year: 2011 ident: 1050_CR13 publication-title: Experiments in Fluids doi: 10.1007/s00348-011-1207-y – ident: 1050_CR42 doi: 10.1109/CVPR.2015.7298644 |
| SSID | ssj0002823 |
| Score | 2.6652126 |
| Snippet | Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity frames. They offer significant... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1394 |
| SubjectTerms | Algorithms Artificial Intelligence Cameras Computer Imaging Computer Science Computer vision Image Processing and Computer Vision Image reconstruction Pattern Recognition Pattern Recognition and Graphics Real time Vision |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAcmkKU2iROHDUorBqgQhahMkWOfpUpVigiClR_BL-SXcM6jEQiQYHXOVnRn-77zvQg55B5Ik3cNgCRkXuAoJgQ4DFyVaDA60PnTRXQZDIdiPA6vyzzurIp2r1yS-U1dJ7t1HetzxFsVMQHaPItkCbWdsP0abkbR_PpFG6LoH492EffDbuXK_G6Jz8qoRphfnKK5rhk0__WXa2S1hJb0tNgL62QB0g3SLGEmLQ9xhkNVJ4dqbJPc96-i0Qnt2-BHdoaKTdM8M5dFE3ihI6SF2fvrm3tOrblaF52l9hmXyrSYSXvSPnHRSYpkcspseskWuRv0b3sXrGy6wBQaqD7TiGM9wcEHbhLOtWu0xYRdJQPj6I5vPIkKjetOoDiEknPfA9cDJX0TADiuu00a6SyFHUIhCBOQXDlCc09qmRhlFOCB9xMlkbpFOhX3Y1VWJLeNMaZxXUvZcjNGbsaWm7HfIkfzKQ9FOY7fiNuVSOPyZGYxqmoRCmv4t8hxJcL684-L7f6Jeo-sILISRdxLmzRQLLBPltXz0yR7PMg37AcsC-U1 priority: 102 providerName: Springer Nature |
| Title | EMVS: Event-Based Multi-View Stereo—3D Reconstruction with an Event Camera in Real-Time |
| URI | https://link.springer.com/article/10.1007/s11263-017-1050-6 https://www.proquest.com/docview/2128987888 |
| Volume | 126 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOnDhsSyiPCof9rTIok3iOOGyglKExFJVlC2wl8ixxxISSoEizvwIfuH-EsaJQ8RKcOFiKc7YiTT2zDcz9gzADxGhsmXVAMxTHslA8yTBgGOoc4PWSFO6Lsa_5WCQXF2lQ-9wm_pjlbVMLAW1mWjnI98jEZuQfUwG26-7e-6qRrnoqi-hMQvzDtm4I31nnd6bJCZzoiolTyaSiNNuHdUsr851AxfBJBlNCIMsqPd6qQGb_8VHS7VzvPzVH16BJQ842UG1QlZhBotvsOzBJ_Nbe0pddX2Hum8Nrvtn49E-67sjkfyQ1J1h5X1dPqYvsxHR4uTf80t4xJwR26SiZc65y1RRjWQ95Rxf7KYgMnXL3aWT7_DnuH_RO-G-FAPXZLbG3BC6jRKBMQqbC2FCaxxS7GolbWA6sY0UqTlhOlILTJUQcYRhhFrFViIGYbgOc8WkwA1gKNMcldBBYkSkjMqtthpJDMS5VkTdgk7NiEz7POWuXMZt1mRYdrzLiHeZ410Wt-Dn25C7KknHZ8TbNb8yv1-nWcOsFuzWHG9efzjZ5ueTbcEiAaykOv6yDXPEB9yBBf30eDN9aMOsvLxuw_xhfzA8p6dTydvlAqZ2KP5Sez4avwJ14_WO |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hQGovpfRHbKHgA720sthN4jiphBA_i0C7rCpBV3AKjj2WVkJZ2kUgbn0InoOH4kkYJzFRkeDGgasztuR4_M2fZwZgVUSobNk1APOURzLQPEkw4Bjq3KA10pSui2FfDgbJ8XH6awpufS6Me1bpMbEEajPWzke-RhCbkH1MBtvG-R_uuka56KpvoVGxRQ-vr8hkm6zv79D5fguC3e7R9h6vuwpwTRZYzA0palEiMEZhcyFMaI1TejpaSRuYdmwjRYgtTFtqgakSIo4wjFCr2ErEwDlACfJnojCR7l71JH9AfjJfqtb1ZJKJOO34KGqZqtcJXMSUZAJpNGSx_S8HG-X2UTy2FHO7c6_tB72Hd7VCzTarGzAPU1h8gLlauWY1dE1oyPev8GMf4aR7MDz8ybruySffInFuWJmPzIe0U3ZItDi--3cT7jBnpDeldplzXjNVVDPZtnKOPTYqiEydcZdU8wl-v8ieP8N0MS5wARjKNEcldJAYESmjcqutRoK5ONeKqFvQ9gef6boOu2sHcpY1FaQdr2TEK5njlSxuwfeHKedVEZLniJc8f2Q1Hk2yhjla8MNzWPP5ycW-PL_YCrzZOzroZ_39QW8R3pIymVRPfZZgms4Ev8KsvrwYTf4ulxeFwelLM9492rNNLA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bSxwxFD6IFulLtTe6Xto8tC-V0N3ZyVyEUlp3F0W7LKiL-jJmkhMQZFZdUXzzR_hr-nP6S3rOzMShhfrmg6-ZJJDJl3O_AHxUIWpXdg3APJVhHBiZJBhI7JrcorOxLU0X4514OEwODtLRDPzyuTAcVulpYkmo7cSwjfwLkdiE9GNW2FwdFjHqDb6dnUvuIMWeVt9Oo4LINt5ck_o2_brVo7v-FASD_t7Gpqw7DEhD2lgkLQltYaIwQuVypWzXWRaAOkbHLrDtyIWaqLey7dgoTLVSUYjdEI2OXIwYsDGUyP8cbZVyOOFIHd1zAVJlqjb2pJ6pKO14j2qZttcJ2HtK_IGkG9Le_uaJjaD7j2-2ZHmDhaf8sxbhRS1oi-_Vy3gJM1i8goVa6BY1SZvSkO9r4cdew2H_53h3XfQ5FFT-IDZvRZmnLMd0arFLc3Hy-_au2xOsvDcleAUbtYUuqpViQ7PBT5wUNE2fSk62eQP7j3LmtzBbTAp8BwLjNEetTJBYFWqrc2ecQSJ_UW40zW5B24MgM3V9dm4Tcpo1laUZNxnhJmPcZFELPt8vOauKkzw0ecVjJavp1DRrgNKCNY-25vN_N1t6eLMPME94y3a2htvL8JxkzKSKAFqBWboSXIVn5uryZHrxvnwzAo4fG3d_AGJvVlA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMVS%3A+Event-Based+Multi-View+Stereo%E2%80%943D+Reconstruction+with+an+Event+Camera+in+Real-Time&rft.jtitle=International+journal+of+computer+vision&rft.au=Rebecq%2C+Henri&rft.au=Gallego%2C+Guillermo&rft.au=Mueggler%2C+Elias&rft.au=Scaramuzza%2C+Davide&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=126&rft.issue=12&rft.spage=1394&rft.epage=1414&rft_id=info:doi/10.1007%2Fs11263-017-1050-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |