Graph Transformation Based on Heterogeneous Information Network for Graph Algorithms

In the finical risk control, the graph structure data increasingly show its unique charm, especially the heterogeneous information network (HIN). And, graph computing algorithms for the data mining based on network is the most popular way at the moment. But, most of them require the graph network mu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 2575; číslo 1; s. 12006 - 12011
Hlavní autori: Liu, Zhenguo, Ma, Chao, Zhao, Jimiao, Hu, Haiyang, Yin, Xiongyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.08.2023
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the finical risk control, the graph structure data increasingly show its unique charm, especially the heterogeneous information network (HIN). And, graph computing algorithms for the data mining based on network is the most popular way at the moment. But, most of them require the graph network must have homogeneity and could not be applied to heterogeneous networks. Although the neural network models have some work in the HIN, which like heterogeneous graph neural networks, but these ways cannot provide enough interpretability due to its operations in black-box. In this paper, we summarize strategies to transform the HIN into homogeneous network. And we propose methods aim to rebuild HIN as several homogeneous networks at fine-grained level and greatly retain the original network topological structure information compared the previous which easy to lose sight of. The effectiveness of our method is verified by real data and community detection algorithms. In the experiment, the analysis found that our approached consistently perform promising results compared with the coarse-grained data processing on HIN.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2575/1/012006