Trajectory prediction-based guidance law

This paper proposes a guidance law based on trajectory prediction, aiming to address the difficulty of traditional guidance laws in meeting high-speed and highly maneuverable vehicles. The unscented Kalman filtering (UKF) technique is employed to estimate the target’s motion and predict the virtual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 2691; H. 1; S. 12034 - 12041
Hauptverfasser: Li, Mengxuan, Guo, Jianguo, Jiang, Ruimin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.01.2024
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a guidance law based on trajectory prediction, aiming to address the difficulty of traditional guidance laws in meeting high-speed and highly maneuverable vehicles. The unscented Kalman filtering (UKF) technique is employed to estimate the target’s motion and predict the virtual impact point using the Singer model and measuring model. The midcourse guidance law is applied to the virtual target, taking into account the constraint of the intersection angle, while the terminal guidance utilizes modified proportional guidance. To mitigate the overload chattering in the transition sections of both midcourse and terminal guidance, the distance is used to modify the transition section of the terminal guidance. Simulation results demonstrate that the proposed guidance law effectively reduces both the encounter angle and the required maneuvering. Furthermore, to minimize midcourse guidance errors, the prediction results of the virtual target are continually updated during the trace process. This method can also be applied to trail other highly maneuverable targets.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2691/1/012034